PUREAIRE MONITORING SYSTEMS
  • Blog
  • Products
  • About
  • Contact
  • Blog

New Solar Cell Technology to Help lower prices for the consumer

2/22/2019

2 Comments

 
Picture
Picture
Inkjet Perovskite solar cells may help shape the future of energy production by lowering costs, and transparency.
Solar panels used to be costly and time-consuming to produce—and quite expensive on the consumer side. New technologies have driven costs as well as production time down, to the benefit of consumers. See what's new with solar panels and where the solar cell technology is going. 

New Solar Panel Developments 

In traditional solar panels, silicon acts as a semiconductor. By doping the silica material with gallium and arsenic impurities, the silicon-based solar panel is able to capture solar energy and convert the sun's energy to electricity. While there are other materials that can act as semiconductors for solar energy, silicon is ideal because is forms an oxide at high temperatures. The oxide makes it easy to product consistent, high quality solar panels. The latest generation of solar cells use perovskite rather than silicon.

In 2009, researchers first discovered that perovskite could also be used to make photovoltaic solar cells. Despite the potential of this discovery, perovskites weren't considered a good choice for solar panels, because the materials needed to be heated to such high temperatures that very few materials could be coated with the perovskite solution. Glass could withstand the high heat, but a glass solar panel would be an impractical product for obvious reasons. 

A young scientist recently discovered a new way to work with perovskites. Using an evaporation method, Polish scientist Olga Malinkiewicz, was able to coat flexible foil with perovskites. To speed the substrate drying process, nitrogen was used. By blowing dry nitrogen gas over the wet perovskite film, the resulting evaporation happened faster and more consistently. Without utilizing nitrogen in the process, the panels could have an inconsistent coverage, which would lead to poor energy conversion rates. 

The resulting solar panels were thin and flexible, both in their material application and their use cases. Imagine a portable solar panel that could attach to a laptop, drone, or car, something that could capture the sun's energy indoors or outdoors and travel with you, to power whatever you needed. 

Since her initial discovery, Malinkiewicz has refined the approach. The latest generation of perovskite solar cells are created with an inkjet printing procedure which makes them faster and cheaper to produce. With mass production feasible from an economic perspective, the perovskite solar cells can be a popular option to add electricity to areas that do not have an underlying power grid, whether that's rural communities or developing countries. 

The technology is still being refined, so you won't see widespread perovskite solar cells just yet. However, researchers are cheering the innovation and its potential to revolutionize energy distribution. 

One thing to consider moving forward with perovskite solar panels is the use of nitrogen in the process. Anywhere nitrogen is used, there's a safety risk should the gas leak from supply lines. 

How an Oxygen Monitor Can Help Detect Nitrogen Gas Leaks 
Nitrogen leaks create health risks because nitrogen displaces oxygen, which humans need to breathe. Undetected, a nitrogen leak could create oxygen-deficient air, leading to respiratory distress and eventually death via asphyxiation. Nitrogen gases is both colorless and odorless, which means it would be impossible to detect a leak relying on the senses.

​The easiest way to detect a leak is to measure ambient oxygen using an oxygen monitor. Oxygen monitors continually track levels of oxygen, sounding an alarm if levels fall to the OSHA threshold where safety is at risk. With flashing lights and a loud alarm, workers will be able to exit the room before the onset of health problems. 

PureAire creates industry-leading oxygen monitors that last for 10 or more years, with no calibration or maintenance needed. Learn more or view product specs at www.pureairemonitoring.com.





2 Comments

Pepsi Is Launching the First Ever “Nitro Soda”

2/11/2019

0 Comments

 
Picture
Picture
Nitrogen-infused or nitro beverages have been among the biggest trends in the beverage industry. There's been no shortage of nitro cold brew coffees and nitro beers, but never a nitro soda—until now, with the launch of Nitro Pepsi. The new beverage was sampled at the 2019 Super Bowl and while you won't find it on tap just yet, here's what you can look forward to.

Introducing Nitro Pepsi 

​Nitro Pepsi aims to revolutionize the most signature aspect of soda, which is the carbonation.

CO2 gas is responsible for creating the tangy bubbles that give soda its texture and mouthfeel. Nitrogen creates bubbles that are smaller and softer, for a creamier mouthfeel in the drink. The creamy experience naturally complements sweet, malty beer styles like stouts and porters, as well as cold brew coffees.

Translated into Pepsi, the nitrogen bubbles create a beverage that's reminiscent of an ice cream float (with that creamy sweetness). The drink will be available in two flavors, original Pepsi and vanilla. Pepsi recommends drinking the Nitro Pepsi cold, but not over ice.

With its new nitro soda, Pepsi hopes to transform the soda drinking experience, much the way that craft beer and coffee have been transformed by nitro drinks, and introduce their brand to a new audience of consumers.

While there's a lot of excitement around the new beverage, there are also some risks to consider, due to the use of nitrogen gas. Nitrogen is naturally dense and will displace oxygen in the environment. If the bottling plant experiences a nitrogen leak, this means that oxygen within the bottling plant will be pushed out of the air, creating a public health hazard.

Nitrogen gas is colorless and odorless, so employees would not be able to spot the leak. When oxygen levels first begin falling, employees will not notice any symptoms. By the time oxygen levels dip to the point where health is at risk, employees may begin to experience cognitive confusion or suffer respiratory distress. With oxygen deprivation, there's a risk of losing consciousness or suffering death via asphyxiation.

Preventing Nitrogen Leaks With a Dual O2/CO2 Monitor

While the nitrogen leak cannot be detected, what can be tracked is the level of oxygen in the room. By paying attention to oxygen levels and alerting employees when levels fall below the safe threshold, as defined by OSHA, a dual O2/CO2 monitor protects public health. Not only are these alarms required by OSHA where inert gases like nitrogen are used, they are the easiest way to protect employees from workplace hazards and deliver peace of mind in the plant bottling area. 

The O2 monitor works by sampling the air to check oxygen levels. As long as oxygen levels are within the safe zone, the monitor is silent. With PureAire products, the monitor always displays readouts on a screen, so employees can check oxygen levels at a glance.

If a nitrogen leak develops and oxygen starts to fall, the monitor will flash lights and sound an alarm so that employees have ample warning to evacuate the area. Plant workers can then alert emergency services, who can respond to the leak.

There are many O2 monitors on the market, but PureAire's are unique for their construction. PureAire O2 monitors and dual O2/CO2 monitors feature zirconium sensors, which offer 10 or more years of reliable performance with no calibration. PureAire monitors do not need calibration or maintenance. All that's needed is to unbox the monitor, mount it on the wall, and plug it in to enjoy continuous oxygen monitoring and superior leak detection.
​
PureAire's O2 monitors are industry leading for their quality, construction, and performance. To learn more about PureAire’s dual O2/CO2 monitor or oxygen monitor, visit www.pureairemonitoring.com.

0 Comments

    1140 Ensell , Lake Zurich IL 60047-6711
    Toll Free: 888.788.8050 • Phone: 847.726.6000
    Fax: 847.726.6051 • Email:[email protected]

    Archives

    May 2024
    April 2024
    March 2024
    September 2023
    July 2023
    June 2023
    April 2023
    November 2022
    September 2022
    July 2022
    April 2022
    January 2022
    November 2021
    August 2021
    June 2021
    May 2021
    March 2021
    February 2021
    December 2020
    November 2020
    October 2020
    August 2020
    November 2019
    October 2019
    July 2019
    June 2019
    May 2019
    April 2019
    February 2019
    January 2019
    December 2018
    October 2018
    September 2018
    August 2018
    May 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    August 2017
    June 2017
    May 2017
    March 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    November 2015
    October 2015
    September 2015
    August 2015
    June 2015

    Categories

    All
    3D Metal Printing
    3D Printing
    Additive Manufacturing
    Airlines
    Alternative Fuel Vehicles
    Argon
    Beyond Meat
    Breweries
    Build Chamber
    Butane
    Cannabinoids
    Cannabis
    Cannabis Extraction
    Carbon Capture
    Carbon Dioxide
    Carbon Dioxide Monitor
    Cbd
    CBD Oil
    Char
    Charring
    Chlorine
    Chlorine Gas
    Chlorine Safety
    CL2
    CNG
    CO2
    Cold Chain
    Combustible
    Combustible Gas
    Combustible Gas Monitor
    Compressed Gases
    Corrosion
    Covid-19 Vaccine
    Cryochamber
    Cryogenic
    Cryogenic Facilities
    Cryogenic Gases
    Cryopreservation
    Cryopump
    Cryo Spa
    Cryostorage
    Cryotherapy
    Disinfectant
    Disinfecting
    Disinfection
    Dry Ice
    Earthly Labs
    Eggs
    Electrolyte
    Embryos
    Ethanol
    Ethyl Alcohol
    Ethylene
    EtO
    Explosion Proof
    Extraction
    Fertility Clinic
    Flammable
    Flash-frozen
    Food
    Food Processing
    Food Spoilage
    Freeze-dried
    Freezer
    Gas
    Gas Detection
    Gas Detector
    Gas Detectors
    Gases
    Gas Leak
    Gas Leaks
    Gas Mixture
    Grow
    H2o2
    Hand Sanitizer
    Helium
    Heme
    Hopper
    Hot Melt Adhesive
    Hot Melt Foam Adhesive
    How To Monitor Oxygen Levels In A Room
    Hydrocarbon
    Hydrocarbon Solvent Extraction
    Hydrogen Fuel
    Hydrogen Peroxide
    Hydrogen Peroxide Vapor
    Impossible Foods
    Inert Gas
    In Vitro Fertilization
    IVF
    James Webb Telescope
    Laboratory Safety
    Leak Detection
    Leghemoglobin
    Lel
    Li-ion Battery
    Liquid Helium
    Liquid Nitrogen
    Liquid Nitrogen Leak
    Lithium-ion Battery
    LN2
    LNG
    Low Oxygen Environments
    Magnetic Resonance
    Medical Device
    Melt Tank
    Metal Powders
    Modified Atmosphere Packaging
    Monitoring
    Mri
    Mri O2 Monitor
    N2
    N95 Masks
    N95 Respirators
    Natural Gas
    Nema 4
    Nitrogen
    Nitrogen Blanketing
    Nitrogen Generator
    Nmr
    O
    O2
    O2/CO2 Monitor
    O2 Dry Ice
    Off-gas
    Osha
    Oxidation
    Oxide
    Oxygen
    Oxygen Analyzer
    Oxygen/carbon Dioxide Monitor
    Oxygen Deficiency
    Oxygen Deficiency Monitor
    Oxygen Deficiency Monitors
    Oxygen Depleting
    Oxygen Depletion
    Oxygen Detection
    Oxygen Displacement
    Oxygen Levels
    Oxygen Monitor
    Oxygen Monitoring
    Oxygen Monitors
    Pharmaceutical
    Plant Based Meat
    Porosity
    PPE
    Propane
    PureAire
    Sample Draw Oxygen Monitor
    Smart Sensor Cell
    Sterilization
    Sterilizing
    Superconductivity
    Surgical Devices
    Tank Blanketing
    Terpenes
    Thc
    Thermal Runaway
    Thermal Vacuum Chamber
    Titanium
    Trace Oxygen
    Tunnel Freezer
    Universal Gas Detector
    Vaccine
    Vaccine Storage
    Vaccine Transport
    Water Resistant
    Whole Body Cryotherapy
    Zirconium Oxide

Proudly powered by Weebly