PUREAIRE MONITORING SYSTEMS
  • Blog
  • Products
  • About
  • Contact
  • Blog

University Environmental Health & Safety Departments: Handling Compressed Nitrogen and Cryogenics

3/7/2017

0 Comments

 
Picture
*Oxygen sensor product website
 
An explosion at a university research lab in Hawaii last year highlights the dangers of working with compressed gas and the need for safety equipment on campus. Learn the dangers of working with compressed gas, how an oxygen deficiency monitor can help, and campus safety best practices. 
 
Compressed Gas on Campus: Uses and Dangers
Compressed gases including nitrogen, argon, and oxygen are widely used on campuses. These gases have many practical and educational uses across educational institutions. While the level of risk varies across schools, a few examples will illustrate the benefits and the risks of using compressed gas on campus.
 
Argon gas is critical in the 3D printing process, which campus design, fine arts, applied arts, and sciences may use. Culinary programs may use liquid nitrogen for cooking and freezing, and chemistry labs may use N2 as well. Autoclaves, which sterilize equipment, are regularly used in scientific, medical, and industrial programs. Sports programs and physical therapy training programs may use cryotherapy for injury recovery. Cryotherapy chambers rely on nitrogen to chill the air. The chambers can turn deadly if a nitrogen leak occurs. These gases may be used by facilities personnel, researchers, faculty members or teaching assistants and students assisting with teaching labs. No matter which gas students are working with, they are at risk if the gas is not handled, used, stored, or transported properly. 
 
As these few examples illustrate, there are many opportunities for dangerous leaks, explosions, or fires on campus if safety protocol isn't followed. Many schools find the gases are not properly stored, which leaves everyone on campus in danger. A recent safety bulletin from the University of Rochester found that liquid nitrogen was stored without an oxygen sensor, poisonous gas was used with a fume hood that did not adequately vent hazardous fumes, gas cylinders were modified using unacceptable materials, and gas tanks were stored without protective chains, stands, and gas caps. 
 
Why Schools and Universities Need an O2 Monitor 
As the incident in the Hawaiian university lab illustrates clearly, compressed gases pose significant health risks in the university setting. Whenever safety protocol is not followed, the tanks are at greater risk of tipping, falling over, or leaking. 
 
While the lab worker escaped with her life, many others have not been so lucky. A nitrogen (N2) gas leak causes death via asphyxiation in a matter of minutes. 
 
Nitrogen gas is both odorless and colorless. If gas leaks from a canister, there is no way for passerby to tell. As the gas leaks, it lowers ambient oxygen levels below safe thresholds. When levels of oxygen in the air fall below 16 percent, people can experience adverse health affects. Additionally, university property can be damaged by fires or explosions. 

All it takes it a couple of breaths of oxygen-deficient air for symptoms including confusion, dizziness, fatigue, muscular aches, lack of consciousness, and even death. 
 
Given the clear dangers that these gases pose, universities and schools must take steps to protect their students and staff. Fortunately, there is an easy and cost-effective way to detect gas leaks and alert everyone before oxygen is depleted from the air: Installing an O2 monitor. 
 
An O2 monitor, also called an O2 deficiency monitor, measures levels of oxygen in the air all the time. As long as the air has adequate oxygen, the monitor will stay silent. When levels fall below safe thresholds, the oxygen deficiency monitor will flash lights and sound an alarm. This way, everyone in the vicinity of the leak can escape without suffering adverse health effects. 
 
An O2 deficiency monitor should be installed anywhere that these gases are used or stored. Universities and schools may wish to equip labs, storage facilities, equipment rooms, and hallways or corridors that connect storage rooms with labs or classrooms where the gas is used. 
 
PureAire offers robust oxygen deficiency monitors that feature best in class construction. Made with zirconium oxide sensors, these monitors offer 10 or more years of maintenance-free performance once installed. These monitors can detect leaks of gases including argon, nitrogen, and helium. View PureAire's line of oxygen deficiency monitors at www.pureairemonitoring.com.
 
 
http://cen.acs.org/articles/94/web/2016/04/Spark-pressure-gauge-caused-University.html
0 Comments

Nitrogen Refrigerated Trucks a New Trend? An Alternative to Diesel Powered Refrigeration

3/7/2017

3 Comments

 
Picture
Thanks to technological innovations, the food distribution industry has a greener way to protect refrigerated food during transit: Nitrogen refrigeration. The existing system relies on diesel-powdered mechanical refrigeration units. Although these units are effective, they release significant levels of noise and air pollution. While the new innovations decrease emissions to safeguard the environment, there is a hidden health risk transportation companies must take into account. 

How Liquid Nitrogen Refrigeration Works

The new system uses a liquid nitrogen system to cryogenically chill food. A storage tank mounted underneath the truck can be easily refilled when empty. Since the tank is stored outside the truck, the liquid nitrogen never comes into direct contact with the food.
To cool the refrigerated container, liquid nitrogen first passes through a heat exchanger. As the nitrogen moves through the heat exchanger, it evaporates. High-powered fans inside the container circulate the chilled air through the compartment, helping keep all food safely chilled below the temperature danger zone. 

The traditional mechanical refrigeration system emits significant noise while in operation. Even when the truck itself is off, the refrigeration unit can cause as much as 80 dB of noise, which is roughly as much noise as a busy urban environment. This noise level exceeds the typical noise pollution levels in cities, thus limiting the hours when truckers can make deliveries. Additional downsides to the mechanical refrigeration system include reliance on harmful refrigeration chemicals and expensive maintenance and repair costs. 

In contrast, the liquid nitrogen system falls beneath the noise pollution thresholds, so deliveries can be made at any time. This benefits both truckers and restaurants, grocery stores, and other businesses who may want to accept deliveries outside of business hours. 

The liquid nitrogen system, or N2 system, also reduces carbon dioxide emissions significantly and does not use harmful refrigerants to keep food cool. Transportation companies who want to green their image or offer their clients increased flexibility will enjoy the liquid nitrogen refrigerant system for these reasons. 

While the cryogenic system reduces costs and pollution associated with mechanical refrigeration, the N2 system is not perfect. Liquid nitrogen does pose a safety risk if it comes into contact with the food or the environment. If a truck rollover accident caused a nitrogen spill, for example, individual health and environmental dangers abound. 

If the nitrogen gas seeps into the load chamber in the accident, it could turn the truck chamber into an oxygen deficient environment. Staff who opened the truck chamber to check on their load could become dizzy, pass out, and die within minutes of entering the oxygen deficient space. 

The liquid nitrogen itself has cryogenic properties, which is why it's been used to freeze off cancerous cells and warts. A worker cleaning up the spill must take precautions to avoid getting liquid nitrogen on their skin. In a worst-case scenario, an employee could lose a finger if it was immersed in liquid nitrogen. 

How to Safeguard Truckers Against Liquid Nitrogen Dangers

An O2 deficiency monitor, also called an oxygen monitor, can protect employees from the dangers posed by liquid nitrogen. These monitors continually measure the amount of oxygen in the load chamber. When the cryogenic system is working properly, oxygen will naturally remain at safe levels and the alarm will stay silent yet vigilant. In the event that nitrogen gas leaks into the load chamber -- due to a system malfunction or an accident - oxygen levels will start dropping. Once the environmental oxygen levels falls below OSHA thresholds, the oxygen monitor will flash and sound an alarm. This notifies staff that safety hazards exist, so they will not open the load chamber and enter an oxygen deficient environment. 
Since staff can succumb to asphyxiation within minutes, the O2 deficiency monitor is necessary to monitor system performance and keep employees safe if anything goes wrong. Since nitrogen is invisible and odorless, employees have no other way to know whether the system's operating as it should or whether there is an N2 leak. 
Oxygen monitors from PureAire use zirconium oxide sensors, which provide reliable service for 10+ years. To learn more about PureAire products, please visit www.Pureairemonitoring.com.

Sources:
http://www.bbc.com/news/magazine-19870668
 
Nitrogen, oxygen monitor, oxygen deficiency monitor, O2 monitor, refrigeration, nitrogen refrigeration
3 Comments

    1140 Ensell , Lake Zurich IL 60047-6711
    Toll Free: 888.788.8050 • Phone: 847.726.6000
    Fax: 847.726.6051 • Email:[email protected]

    Archives

    May 2024
    April 2024
    March 2024
    September 2023
    July 2023
    June 2023
    April 2023
    November 2022
    September 2022
    July 2022
    April 2022
    January 2022
    November 2021
    August 2021
    June 2021
    May 2021
    March 2021
    February 2021
    December 2020
    November 2020
    October 2020
    August 2020
    November 2019
    October 2019
    July 2019
    June 2019
    May 2019
    April 2019
    February 2019
    January 2019
    December 2018
    October 2018
    September 2018
    August 2018
    May 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    August 2017
    June 2017
    May 2017
    March 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    November 2015
    October 2015
    September 2015
    August 2015
    June 2015

    Categories

    All
    3D Metal Printing
    3D Printing
    Additive Manufacturing
    Airlines
    Alternative Fuel Vehicles
    Argon
    Beyond Meat
    Breweries
    Build Chamber
    Butane
    Cannabinoids
    Cannabis
    Cannabis Extraction
    Carbon Capture
    Carbon Dioxide
    Carbon Dioxide Monitor
    Cbd
    CBD Oil
    Char
    Charring
    Chlorine
    Chlorine Gas
    Chlorine Safety
    CL2
    CNG
    CO2
    Cold Chain
    Combustible
    Combustible Gas
    Combustible Gas Monitor
    Compressed Gases
    Corrosion
    Covid-19 Vaccine
    Cryochamber
    Cryogenic
    Cryogenic Facilities
    Cryogenic Gases
    Cryopreservation
    Cryopump
    Cryo Spa
    Cryostorage
    Cryotherapy
    Disinfectant
    Disinfecting
    Disinfection
    Dry Ice
    Earthly Labs
    Eggs
    Electrolyte
    Embryos
    Ethanol
    Ethyl Alcohol
    Ethylene
    EtO
    Explosion Proof
    Extraction
    Fertility Clinic
    Flammable
    Flash-frozen
    Food
    Food Processing
    Food Spoilage
    Freeze-dried
    Freezer
    Gas
    Gas Detection
    Gas Detector
    Gas Detectors
    Gases
    Gas Leak
    Gas Leaks
    Gas Mixture
    Grow
    H2o2
    Hand Sanitizer
    Helium
    Heme
    Hopper
    Hot Melt Adhesive
    Hot Melt Foam Adhesive
    How To Monitor Oxygen Levels In A Room
    Hydrocarbon
    Hydrocarbon Solvent Extraction
    Hydrogen Fuel
    Hydrogen Peroxide
    Hydrogen Peroxide Vapor
    Impossible Foods
    Inert Gas
    In Vitro Fertilization
    IVF
    James Webb Telescope
    Laboratory Safety
    Leak Detection
    Leghemoglobin
    Lel
    Li-ion Battery
    Liquid Helium
    Liquid Nitrogen
    Liquid Nitrogen Leak
    Lithium-ion Battery
    LN2
    LNG
    Low Oxygen Environments
    Magnetic Resonance
    Medical Device
    Melt Tank
    Metal Powders
    Modified Atmosphere Packaging
    Monitoring
    Mri
    Mri O2 Monitor
    N2
    N95 Masks
    N95 Respirators
    Natural Gas
    Nema 4
    Nitrogen
    Nitrogen Blanketing
    Nitrogen Generator
    Nmr
    O
    O2
    O2/CO2 Monitor
    O2 Dry Ice
    Off-gas
    Osha
    Oxidation
    Oxide
    Oxygen
    Oxygen Analyzer
    Oxygen/carbon Dioxide Monitor
    Oxygen Deficiency
    Oxygen Deficiency Monitor
    Oxygen Deficiency Monitors
    Oxygen Depleting
    Oxygen Depletion
    Oxygen Detection
    Oxygen Displacement
    Oxygen Levels
    Oxygen Monitor
    Oxygen Monitoring
    Oxygen Monitors
    Pharmaceutical
    Plant Based Meat
    Porosity
    PPE
    Propane
    PureAire
    Sample Draw Oxygen Monitor
    Smart Sensor Cell
    Sterilization
    Sterilizing
    Superconductivity
    Surgical Devices
    Tank Blanketing
    Terpenes
    Thc
    Thermal Runaway
    Thermal Vacuum Chamber
    Titanium
    Trace Oxygen
    Tunnel Freezer
    Universal Gas Detector
    Vaccine
    Vaccine Storage
    Vaccine Transport
    Water Resistant
    Whole Body Cryotherapy
    Zirconium Oxide

Proudly powered by Weebly