PUREAIRE MONITORING SYSTEMS
  • Blog
  • Products
  • About
  • Contact
  • Blog

New requirements for safe use and storage of liquid nitrogen and dry ice

4/20/2019

2 Comments

 
Picture
The College of American Pathologists ("CAP")recently imposed new requirementsto address risks related to the use and storage of liquid nitrogen ("LN2") and dry ice.

Background
The new requirements come after a deadly incident in 2017, when liquid nitrogen leaked at a Georgia lab that was not accredited through CAP.  Emergency responders were called to the scene when an employee suffered burns and, moreover,lost consciousness from oxygen deprivation caused by the leak. While the employeeeventuallyrecovered from her injuries, one of the first responders died of asphyxiation as a result ofthe nitrogen leak.
That unfortunate incident illustrates the dangers of nitrogen leaks,which are inherent in the storage and use of LN2. Indeed, there are several cases reported nearly every year of laboratory personnel who die of asphyxiation caused by exposure to nitrogen gas.
Asphyxiation riskis present in dry ice usage as well since, if it is stored in areas without proper ventilation, dry ice can replaceoxygen with carbon dioxide, potentially causing workers to rapidly lose consciousness.

CAP’s New Regulations
Despite their safety risks, both dry ice and LN2 have many beneficial uses in commercial and lab settings, including hospital and research facilities. As such, CAP’s new focus on utilizing best practices to increase employee safety and reduce the danger of nitrogen leaks is vitally important.
Before the regulations were changed, lab directors had greater personal discretion in selectingthe types and deployment of safety equipment utilized in their facilities. Now, laboratories are required to place oxygen("O2") monitors at human height breathing levels anywhere liquid nitrogen is used or stored, and they must place signage warning of safety risk regarding, and train all affected employees on safe handling of, LN2 and dry ice.
Pathologists understand that oxygen/carbon dioxide monitors must be placed appropriately anywheredry ice or LN2 are used or stored.  Even a couple tanks of liquid nitrogen kept in a supply closet pose a safety risk, because even a small leak can quickly displace a large amount of oxygen.
​
Oxygen Monitors Protect Laboratory Workers
While many people realize that the use and storage of liquid nitrogen and dry ice can present health risks, they may fail to grasp the speed at which circumstances can become dangerous.  It takes only a few breaths of oxygen-deficient air for one to lose consciousness.
Picture
AS CAP recognized, oxygen and carbon dioxide monitors offer an effective solution to the health and safety risks posed by nitrogen leaks and inadequatedry ice storage. O2/CO2 monitors continually monitor the air, and they will remain silent so long as oxygen and carbon dioxideremain within normal levels.However,in the event that oxygen is depleted to an unsafe level (19.5%, as established by OSHA), or carbon dioxide levels rise to an unsafe level, alarms embedded in the monitors will sound, alerting employees to evacuate the area and summon assistance from qualified responders.

PureAireMonitors
PureAire Monitoring Systems’ line of oxygen and dual oxygen/carbon dioxide monitors offerthorough air  monitoring, with no time-consuming maintenance or calibration required., The monitors function well in confined spaces, such as closets, basements, and other cramped quarters.  PureAire’s monitors can handle temperatures as low as -40 C, making them ideally suited for environments, such as laboratories, that utilize liquid nitrogen or dry ice. A screen displays current oxygen levels for at-a-glance reading by employees, who derive peace of mind from the monitor’s presence and reliable performance.
​
Picture
Built with zirconium oxide sensor cells and non-dispersive infrared sensor (NDIR)cells, to ensure longevity, Pure Aire O2 monitors can last, trouble-free, for over 10 years under normal operating conditions.  That makes PureAire a cost-effective choice forprotecting employees and complying with the new safety regulations affecting labs and hospitals.
Learn more about oxygen monitors and best practices for their use at www.pureairemonitoring.com.
2 Comments

From Farm to Market: Fruit Ripening

4/11/2019

0 Comments

 
Picture
Fruit has a brief window where it is perfectly ripe. If farmers waited until every piece of fruit was ripe before harvesting, farming would be more labor-intensive as farmers rushed to pick ripe fruits. Prices might crash due to a short-term glut of fruit on the market. To ensure a steady supply and demand, keep prices competitive, and reduce food waste, farmers use artificial ripening procedures. One method for ripening fruit after harvest involves ripening chambers. Ripening chambers using ethylene, a natural plant hormone, enable the fruit to be harvested, stored, and transported to where it will be marketed and consumed. While ethylene ripening chambers are beneficial, they are not without risks.
How Ethylene Ripening Chambers Work
While there are other ways to artificially ripen fruit in ripening chambers, ethylene has become a favorite, since it occurs naturally in fruit.
Ethylene is a natural hormone found in plants. Fruits begin to ripen when exposed to ethylene, whether the exposure occurs naturally or artificially. In ethylene ripening chambers, unripe fruits are laid out, and the chamber is sealed.Ethylene gas is then piped into the sealed chamber. As the fruit is exposed to ethylene, the fruit
“respires”,which involves intake of oxygen andemission of carbon dioxide. For the ripened fruit to have the right color and flavor, the ripening should occur in a controlled atmosphere in which the temperature, humidity, ethylene, oxygen, and CO2 concentrationaremaintained at optimum levels.
However, there is a risk of combustion from the ethylene gas, as well as decreased levels of oxygen and increased levels of carbon dioxide inside the chamber.
How Oxygen/Carbon Dioxide and LEL Combustible Monitors Protect Employees
Low oxygen levels cause respiratory distress. If oxygen levels drop below the safe threshold for breathing, which could happen in the event of an ethylene gas leak, employees could suffocate. Suffocation is also a danger when there is too much carbon dioxide in the air. Ethylene gas used in ripening chambers would be hazardous if an employee were to enter the chamber before determining that oxygen and carbon dioxide were at safe levels.

Picture
A dual oxygen/carbon dioxide (O2/CO2) monitor detects the levels of oxygen and carbon dioxide within the chamber and sounds an alarm should the oxygen level falls to an OSHA action levelor if the carbon dioxide rises to an unsafe level.  By checking the monitor’s display, an employee will know when it is safe to enter the chamber.

PureAire Monitoring Systems has developed its dual O2/CO2 monitor with zirconium oxide and non-dispersive infrared sensor (“NDIR”) cells. The cells are unaffected by changing barometric pressure, storms, temperatures, and humidity, ensuring reliable performance.  Once installed, the dual O2/CO2 monitor needs no maintenance or calibration.

​Ethylene is a highly flammable and combustible gas. If the gas lines used to pipe ethylene into the ripening chambers were to develop a leak, the chamber could fill with ethylene and reach combustible levels. A combustible gas monitor, which takes continuous readings of combustible gases, would warn employees of an ethylene leak within the chamber.
Picture
PureAire Monitoring System's Air Check LEL combustible gas monitor continuously monitors for failed sensor cell and communication line breaks. The Air Check LEL gas monitor is housed in an explosion-proof enclosure. If a leak or system error should occur, an alarm will immediately alert employees.
To learn about PureAire Monitoring Systems’ dual O2/CO2 monitors or the Air Check LEL Combustible monitor, please visit www.pureairemonitoring.com.
0 Comments

IVF Cryopreservation and Safe Handling Practices

4/4/2019

0 Comments

 
Picture
Couples that want to have a baby but have not been able to conceive naturally are drawn to invitro fertilization (IVF) treatments.
In an IVF treatment, several eggs are fertilized at once, which creates multiple embryos. While more than one embryo may be implanted, to spur the odds of pregnancy, there are inevitably some unused embryos.
The remaining embryos may be preserved cryogenically, for use later, rather than destroyed. There are many reasons couples may select cryopreservation of embryos, including:
  • A second chance if the IVF treatment fails the first time around
  • The desire to have another child
  • As a precaution before undergoing medically necessary procedures that might the reduce the odds of a successful pregnancy, such as cancer treatment
  • Opportunity to use embryos in medical research
  • Opportunity to donate embryos to another couple
The National Embryo Donation Center estimates that there are over 700,000 human embryos currently stored in the United States.
The cryogenic process relies on cryoprotective agents (or CPAs), which protect the embryo from damage while it freezes. Damage may occur as ice crystals form during the freezing process. Without the use of CPAs, the ice crystals could pierce the embryo wall, causing embryo failure.
Cryopreservation facilities may use either a slow or fast method to freeze the embryos. In the slow method, embryos are frozen in stages, with protective agents added in slow doses over time. The frozen embryos are then preserved in liquid nitrogen until they are slowly thawed for use.
The fast-freezing method combines higher concentrations of CPAs to the embryo, after which the embryo is quickly plunged into liquid nitrogen. The process is so quick that ice is unable to form, thus protecting the embryo from damage.
Wherever liquid nitrogen is used, there are risks associated with nitrogen leaks. Nitrogen displaces oxygen, and a leak would rob the air of oxygen, thereby creating a health hazard for medical staff. When there is not enough oxygen in the air, persons working in the area can suffocate due to the lack of oxygen. Since nitrogen lacks color and odor, there is no way to detect a leak using the senses. In addition, a nitrogen leak could lead to failure of the cryopreservation tanks storing the embryos. In order to ensure the safety of employees, and the viability of the embryos, cryopreservation facilities need to rely on oxygen monitors.

How Oxygen Monitors Protect Employee Health in IVF Facilities
Oxygen monitors continually sample the air, taking periodic readings of current oxygen levels. In the event of a nitrogen leak, and a drop in oxygen to an OSHA action level, the built-in horn will sound, and lights will begin to flash, thereby providing notification to the employees that they must exit the area.
Picture
Best practice calls for oxygen monitors to be placed wherever nitrogen is used or stored. Not all oxygen monitors currently on the market are suitable for use in confined spaces or in freezers.
PureAire Monitoring Systems oxygen monitors are uniquely suited for use in an IVF facility, because the monitors can withstand temperatures as low as -40C.
PureAire Monitoring Systems monitors feature long-lasting zirconium sensors, which are designed to provide accurate readings, without calibration, for up to 10 years. Busy IVF facilities will appreciate the ease of use, and low maintenance of PureAire Monitoring Systems products.
To learn more or to view product specs, please visit www.pureairemonitoring.com
0 Comments

    1140 Ensell , Lake Zurich IL 60047-6711
    Toll Free: 888.788.8050 • Phone: 847.726.6000
    Fax: 847.726.6051 • Email:[email protected]

    Archives

    May 2024
    April 2024
    March 2024
    September 2023
    July 2023
    June 2023
    April 2023
    November 2022
    September 2022
    July 2022
    April 2022
    January 2022
    November 2021
    August 2021
    June 2021
    May 2021
    March 2021
    February 2021
    December 2020
    November 2020
    October 2020
    August 2020
    November 2019
    October 2019
    July 2019
    June 2019
    May 2019
    April 2019
    February 2019
    January 2019
    December 2018
    October 2018
    September 2018
    August 2018
    May 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    August 2017
    June 2017
    May 2017
    March 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    November 2015
    October 2015
    September 2015
    August 2015
    June 2015

    Categories

    All
    3D Metal Printing
    3D Printing
    Additive Manufacturing
    Airlines
    Alternative Fuel Vehicles
    Argon
    Beyond Meat
    Breweries
    Build Chamber
    Butane
    Cannabinoids
    Cannabis
    Cannabis Extraction
    Carbon Capture
    Carbon Dioxide
    Carbon Dioxide Monitor
    Cbd
    CBD Oil
    Char
    Charring
    Chlorine
    Chlorine Gas
    Chlorine Safety
    CL2
    CNG
    CO2
    Cold Chain
    Combustible
    Combustible Gas
    Combustible Gas Monitor
    Compressed Gases
    Corrosion
    Covid-19 Vaccine
    Cryochamber
    Cryogenic
    Cryogenic Facilities
    Cryogenic Gases
    Cryopreservation
    Cryopump
    Cryo Spa
    Cryostorage
    Cryotherapy
    Disinfectant
    Disinfecting
    Disinfection
    Dry Ice
    Earthly Labs
    Eggs
    Electrolyte
    Embryos
    Ethanol
    Ethyl Alcohol
    Ethylene
    EtO
    Explosion Proof
    Extraction
    Fertility Clinic
    Flammable
    Flash-frozen
    Food
    Food Processing
    Food Spoilage
    Freeze-dried
    Freezer
    Gas
    Gas Detection
    Gas Detector
    Gas Detectors
    Gases
    Gas Leak
    Gas Leaks
    Gas Mixture
    Grow
    H2o2
    Hand Sanitizer
    Helium
    Heme
    Hopper
    Hot Melt Adhesive
    Hot Melt Foam Adhesive
    How To Monitor Oxygen Levels In A Room
    Hydrocarbon
    Hydrocarbon Solvent Extraction
    Hydrogen Fuel
    Hydrogen Peroxide
    Hydrogen Peroxide Vapor
    Impossible Foods
    Inert Gas
    In Vitro Fertilization
    IVF
    James Webb Telescope
    Laboratory Safety
    Leak Detection
    Leghemoglobin
    Lel
    Li-ion Battery
    Liquid Helium
    Liquid Nitrogen
    Liquid Nitrogen Leak
    Lithium-ion Battery
    LN2
    LNG
    Low Oxygen Environments
    Magnetic Resonance
    Medical Device
    Melt Tank
    Metal Powders
    Modified Atmosphere Packaging
    Monitoring
    Mri
    Mri O2 Monitor
    N2
    N95 Masks
    N95 Respirators
    Natural Gas
    Nema 4
    Nitrogen
    Nitrogen Blanketing
    Nitrogen Generator
    Nmr
    O
    O2
    O2/CO2 Monitor
    O2 Dry Ice
    Off-gas
    Osha
    Oxidation
    Oxide
    Oxygen
    Oxygen Analyzer
    Oxygen/carbon Dioxide Monitor
    Oxygen Deficiency
    Oxygen Deficiency Monitor
    Oxygen Deficiency Monitors
    Oxygen Depleting
    Oxygen Depletion
    Oxygen Detection
    Oxygen Displacement
    Oxygen Levels
    Oxygen Monitor
    Oxygen Monitoring
    Oxygen Monitors
    Pharmaceutical
    Plant Based Meat
    Porosity
    PPE
    Propane
    PureAire
    Sample Draw Oxygen Monitor
    Smart Sensor Cell
    Sterilization
    Sterilizing
    Superconductivity
    Surgical Devices
    Tank Blanketing
    Terpenes
    Thc
    Thermal Runaway
    Thermal Vacuum Chamber
    Titanium
    Trace Oxygen
    Tunnel Freezer
    Universal Gas Detector
    Vaccine
    Vaccine Storage
    Vaccine Transport
    Water Resistant
    Whole Body Cryotherapy
    Zirconium Oxide

Proudly powered by Weebly