PUREAIRE MONITORING SYSTEMS
  • Blog
  • Products
  • About
  • Contact
  • Blog

When Freshness Counts – Modified Atmosphere Packaging

3/12/2021

0 Comments

 
Picture
Centuries ago, merchants and shippers would place a lit candle inside barrels used to store biscuits before closing the lid. The idea was that the candle flame would deplete the oxygen inside the barrel to help keep the biscuits from spoiling. These days, the candle flame has been replaced by processes called Modified Atmosphere Packaging (MAP), which can be either active or passive. By altering the atmosphere inside food product packages, or by using specialized packaging films, today’s food processors can preserve freshness and taste; extend shelf-life; prevent oxidation, which can lead to food spoilage; and protect against crushing the food contents inside the packaging, all without the use of chemical additives, stabilizers, or even candles.

Why Use Modified Atmosphere Packaging?
​
Consumers want food that not only looks, tastes, and smells good, but is also convenient and lasts longer than a few days after purchase. In order to satisfy consumers, food packagers need to eliminate or, at least, control factors that contribute to food spoilage, including improper levels of moisture, temperature, or light; excessive oxygen (i.e., oxidation); and the growth of microorganisms (such as mold or pathogens that can lead to food-borne illnesses).

Spoiled food means lost revenues and lower profits for producers and intermediaries, higher food prices passed on to the consumer, and an environmental burden, as food waste reportedly contributes to some 8% of global greenhouse gas emissions.

How Does MAP Work?
Active modified atmosphere packaging works by changing the atmosphere inside food packaging, typically by the introduction of gases. For instance, carbon dioxide is often used to remove oxygen from inside the packaging of breads and other baked goods, in order to keep the products from going stale, prevent mold growth, and to extend shelf-life.
Packaged foods with high-fat content, such as certain cheeses or fish high in fatty acids, require a high concentration of carbon dioxide to prevent mold growth and to prevent the cheese or fish from tasting  rancid. However, excessive levels of  carbon dioxide can make certain foods taste sour. To prevent that from occurring, food packagers may elect to use nitrogen, or a mixture of gases, instead of carbon dioxide alone.

Conversely, while certain meat, fish, and poultry require that all or almost all oxygen be removed from inside packaging and replaced with carbon dioxide and/or nitrogen to prevent microbial growth and spoilage, oxygen is actually added to some packaged meats, low-fat fish, and shellfish to prevent fading or loss of color, as well as to inhibit the growth of certain types of bacteria.

Adding nitrogen gas to packaging not only helps salty snack foods stay crispy and fresh by displacing the oxygen inside food packaging, but it also helps protect the contents from getting crushed or broken during transport of the products from manufacturing facilities to stores and, ultimately, to consumers’ pantries.

Fresh fruits and vegetables are often packaged by using a passive form of MAP which includes specialized, permeable packaging films. The permeable film allows the fresh produce to continue to respire (that is, breathe) after being harvested, but at a much slower rate than if it were still on the plant. Low oxygen levels, combined with carbon dioxide or nitrogen, help to preserve the freshness, taste, and appearance of fresh fruits and vegetables.

Proper Monitoring Can Preserve Food Products and Protect Packaging Personnel
Balancing the correct mixture of oxygen, carbon dioxide and nitrogen is vital when it comes to food packaging. Too much or too little of a required gas can lead to foods that have unappetizing taste, smell, or appearance and, in baked goods, can promote mold growth, and staleness.

Moreover, food packagers and others working around carbon dioxide and nitrogen need to be aware of the potential safety risks associated with these odorless and colorless oxygen-depleting gases. According to the Occupational Safety and Health Administration (OSHA), an environment in which oxygen levels fall below 19.5 percent is considered an oxygen-deficient atmosphere and should be treated as immediately dangerous to health or life. When there is not enough oxygen in the air, persons working in the affected area may become disoriented, lose consciousness, or even suffocate due to the lack of sufficient oxygen.

Because carbon dioxide and nitrogen are devoid of odor and color, individuals working around these gases might well, in the absence of appropriate monitoring equipment, be unaware that a safety risk situation has developed.

PureAire Monitors
Picture
PureAire Monitoring Systems’ Dual Oxygen/Carbon Dioxide Monitor offers thorough air monitoring, with no time-consuming maintenance or calibration required. A screen displays current oxygen and carbon dioxide levels for at-a-glance reading by food packaging employees, who derive peace of mind from the Monitor’s presence and reliable performance.

In the event of a carbon dioxide or nitrogen gas leak, and a decrease in oxygen to an unsafe level, PureAire’s Monitor will set off an alarm, complete with horns and flashing lights, alerting personnel to evacuate the area.
​
PureAire’s Dual Oxygen/Carbon Dioxide Monitor is well-suited for facilities where gases such as carbon dioxide and nitrogen are used. Our Dual O2/CO2 monitor includes both a non-depleting, zirconium oxide sensor cell, to monitor oxygen levels, and a non-dispersive infrared (NDIR) sensor cell, to monitor carbon dioxide levels. PureAire’s O2/CO2 monitors can last, trouble-free, for over 10 years under normal operating conditions.
0 Comments

    1140 Ensell , Lake Zurich IL 60047-6711
    Toll Free: 888.788.8050 • Phone: 847.726.6000
    Fax: 847.726.6051 • Email:[email protected]

    Archives

    May 2024
    April 2024
    March 2024
    September 2023
    July 2023
    June 2023
    April 2023
    November 2022
    September 2022
    July 2022
    April 2022
    January 2022
    November 2021
    August 2021
    June 2021
    May 2021
    March 2021
    February 2021
    December 2020
    November 2020
    October 2020
    August 2020
    November 2019
    October 2019
    July 2019
    June 2019
    May 2019
    April 2019
    February 2019
    January 2019
    December 2018
    October 2018
    September 2018
    August 2018
    May 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    August 2017
    June 2017
    May 2017
    March 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    November 2015
    October 2015
    September 2015
    August 2015
    June 2015

    Categories

    All
    3D Metal Printing
    3D Printing
    Additive Manufacturing
    Airlines
    Alternative Fuel Vehicles
    Argon
    Beyond Meat
    Breweries
    Build Chamber
    Butane
    Cannabinoids
    Cannabis
    Cannabis Extraction
    Carbon Capture
    Carbon Dioxide
    Carbon Dioxide Monitor
    Cbd
    CBD Oil
    Char
    Charring
    Chlorine
    Chlorine Gas
    Chlorine Safety
    CL2
    CNG
    CO2
    Cold Chain
    Combustible
    Combustible Gas
    Combustible Gas Monitor
    Compressed Gases
    Corrosion
    Covid-19 Vaccine
    Cryochamber
    Cryogenic
    Cryogenic Facilities
    Cryogenic Gases
    Cryopreservation
    Cryopump
    Cryo Spa
    Cryostorage
    Cryotherapy
    Disinfectant
    Disinfecting
    Disinfection
    Dry Ice
    Earthly Labs
    Eggs
    Electrolyte
    Embryos
    Ethanol
    Ethyl Alcohol
    Ethylene
    EtO
    Explosion Proof
    Extraction
    Fertility Clinic
    Flammable
    Flash-frozen
    Food
    Food Processing
    Food Spoilage
    Freeze-dried
    Freezer
    Gas
    Gas Detection
    Gas Detector
    Gas Detectors
    Gases
    Gas Leak
    Gas Leaks
    Gas Mixture
    Grow
    H2o2
    Hand Sanitizer
    Helium
    Heme
    Hopper
    Hot Melt Adhesive
    Hot Melt Foam Adhesive
    How To Monitor Oxygen Levels In A Room
    Hydrocarbon
    Hydrocarbon Solvent Extraction
    Hydrogen Fuel
    Hydrogen Peroxide
    Hydrogen Peroxide Vapor
    Impossible Foods
    Inert Gas
    In Vitro Fertilization
    IVF
    James Webb Telescope
    Laboratory Safety
    Leak Detection
    Leghemoglobin
    Lel
    Li-ion Battery
    Liquid Helium
    Liquid Nitrogen
    Liquid Nitrogen Leak
    Lithium-ion Battery
    LN2
    LNG
    Low Oxygen Environments
    Magnetic Resonance
    Medical Device
    Melt Tank
    Metal Powders
    Modified Atmosphere Packaging
    Monitoring
    Mri
    Mri O2 Monitor
    N2
    N95 Masks
    N95 Respirators
    Natural Gas
    Nema 4
    Nitrogen
    Nitrogen Blanketing
    Nitrogen Generator
    Nmr
    O
    O2
    O2/CO2 Monitor
    O2 Dry Ice
    Off-gas
    Osha
    Oxidation
    Oxide
    Oxygen
    Oxygen Analyzer
    Oxygen/carbon Dioxide Monitor
    Oxygen Deficiency
    Oxygen Deficiency Monitor
    Oxygen Deficiency Monitors
    Oxygen Depleting
    Oxygen Depletion
    Oxygen Detection
    Oxygen Displacement
    Oxygen Levels
    Oxygen Monitor
    Oxygen Monitoring
    Oxygen Monitors
    Pharmaceutical
    Plant Based Meat
    Porosity
    PPE
    Propane
    PureAire
    Sample Draw Oxygen Monitor
    Smart Sensor Cell
    Sterilization
    Sterilizing
    Superconductivity
    Surgical Devices
    Tank Blanketing
    Terpenes
    Thc
    Thermal Runaway
    Thermal Vacuum Chamber
    Titanium
    Trace Oxygen
    Tunnel Freezer
    Universal Gas Detector
    Vaccine
    Vaccine Storage
    Vaccine Transport
    Water Resistant
    Whole Body Cryotherapy
    Zirconium Oxide

Proudly powered by Weebly