PUREAIRE MONITORING SYSTEMS
  • Blog
  • Products
  • About
  • Contact
  • Blog

Pepsi Is Launching the First Ever “Nitro Soda”

2/11/2019

0 Comments

 
Picture
Picture
Nitrogen-infused or nitro beverages have been among the biggest trends in the beverage industry. There's been no shortage of nitro cold brew coffees and nitro beers, but never a nitro soda—until now, with the launch of Nitro Pepsi. The new beverage was sampled at the 2019 Super Bowl and while you won't find it on tap just yet, here's what you can look forward to.

Introducing Nitro Pepsi 

​Nitro Pepsi aims to revolutionize the most signature aspect of soda, which is the carbonation.

CO2 gas is responsible for creating the tangy bubbles that give soda its texture and mouthfeel. Nitrogen creates bubbles that are smaller and softer, for a creamier mouthfeel in the drink. The creamy experience naturally complements sweet, malty beer styles like stouts and porters, as well as cold brew coffees.

Translated into Pepsi, the nitrogen bubbles create a beverage that's reminiscent of an ice cream float (with that creamy sweetness). The drink will be available in two flavors, original Pepsi and vanilla. Pepsi recommends drinking the Nitro Pepsi cold, but not over ice.

With its new nitro soda, Pepsi hopes to transform the soda drinking experience, much the way that craft beer and coffee have been transformed by nitro drinks, and introduce their brand to a new audience of consumers.

While there's a lot of excitement around the new beverage, there are also some risks to consider, due to the use of nitrogen gas. Nitrogen is naturally dense and will displace oxygen in the environment. If the bottling plant experiences a nitrogen leak, this means that oxygen within the bottling plant will be pushed out of the air, creating a public health hazard.

Nitrogen gas is colorless and odorless, so employees would not be able to spot the leak. When oxygen levels first begin falling, employees will not notice any symptoms. By the time oxygen levels dip to the point where health is at risk, employees may begin to experience cognitive confusion or suffer respiratory distress. With oxygen deprivation, there's a risk of losing consciousness or suffering death via asphyxiation.

Preventing Nitrogen Leaks With a Dual O2/CO2 Monitor

While the nitrogen leak cannot be detected, what can be tracked is the level of oxygen in the room. By paying attention to oxygen levels and alerting employees when levels fall below the safe threshold, as defined by OSHA, a dual O2/CO2 monitor protects public health. Not only are these alarms required by OSHA where inert gases like nitrogen are used, they are the easiest way to protect employees from workplace hazards and deliver peace of mind in the plant bottling area. 

The O2 monitor works by sampling the air to check oxygen levels. As long as oxygen levels are within the safe zone, the monitor is silent. With PureAire products, the monitor always displays readouts on a screen, so employees can check oxygen levels at a glance.

If a nitrogen leak develops and oxygen starts to fall, the monitor will flash lights and sound an alarm so that employees have ample warning to evacuate the area. Plant workers can then alert emergency services, who can respond to the leak.

There are many O2 monitors on the market, but PureAire's are unique for their construction. PureAire O2 monitors and dual O2/CO2 monitors feature zirconium sensors, which offer 10 or more years of reliable performance with no calibration. PureAire monitors do not need calibration or maintenance. All that's needed is to unbox the monitor, mount it on the wall, and plug it in to enjoy continuous oxygen monitoring and superior leak detection.
​
PureAire's O2 monitors are industry leading for their quality, construction, and performance. To learn more about PureAire’s dual O2/CO2 monitor or oxygen monitor, visit www.pureairemonitoring.com.

0 Comments

What is a Room Oxygen Deficiency Monitor?

1/29/2019

2 Comments

 
Picture
Picture
Many industries use compressed gas to create products. While compressed gases such as nitrogen are low-cost, easy to use, and flexible in a range of industries, these gases have a hidden downside: They displace oxygen from the air, which puts your workers at risk of suffocation if there's a leak. A room oxygen monitor checks levels of oxygen and provides in-time alerts if there's a gas leak. Learn what a room oxygen monitor does, how it works, and who needs one. 

What Does an Oxygen Monitor Do? 

Inert gases, such as nitrogen, displace oxygen. Since these gases cannot be seen or smelled, facilities need a tool that's capable of detecting gas leaks. An oxygen monitor tracks levels of oxygen in a room and provides efficient notification if oxygen levels fall as the result of a gas leak. 

Oxygen monitors may be called O2 monitors or oxygen deficiency monitors. While these names are all synonymous, there are a few other terms you might hear that do not refer to this kind of oxygen monitor. 

In the medical and pharmaceutical industries, you may come across blood oxygen monitor, pulse oximetry, or oximeter products. These are totally different products than the oxygen deficiency monitor, and they will not protect against gas leaks. You'll find medical oximeters sold at pharmacies and online retailers, while oxygen deficiency monitors are sold online, through distributors, or directly from manufacturers like PureAire.  
Which Industries Use an Oxygen Monitor? 
Oxygen monitors are used by businesses in the following industries: 
  • Food and beverage 
  • OLED
  • Semiconductor 
  • Automotive 
  • Pharmaceutical 
  • Medical gas
  • MRI 
  • Cryotherapy and cryohealth
  • Cryopreservation 
  • Egg freezing 
  • Research and development 


Businesses in these industries commonly use gases such as nitrogen in everyday operations. An oxygen deficiency monitor not only provides in-time notification of gas leaks but may be required by regulations. Failing to install an oxygen deficiency monitor could leave you out of compliance, which could lead to fines. 

How Does an Oxygen Monitor Work? 

An oxygen monitor works by using a sensor to check levels of oxygen. A digital display interface shows readouts in PPM, PPB, or percentage, so your workers can tell at a glance that everything is functioning properly. 

When levels of oxygen are at naturally occurring levels, the oxygen monitor stays silent. Employees can still check the readout for peace of mind. When something is wrong, an loud alarm goes off to provide your workers with instant notification of a safety threat. 

PureAire's line of oxygen monitors feature a unique zirconium sensor, which is designed to function for 10 years or more with no maintenance. Unlike other types of O2 monitors on the market, our oxygen monitor does not need regular maintenance or calibration. Your facility will save time and money when you choose PureAire products. 

PureAire's O2 monitor perform in a range of environments, including confined spaces, basements, and freezers. Capable of accurate readouts in temperatures as low as -40 C, our oxygen monitors never drift from barometric pressure shifts or thunderstorms. 
​
Do you have questions about oxygen deficiency monitors? We're here to answer your questions. Chat with us online or call today: 888.788.8050.

2 Comments

    1140 Ensell , Lake Zurich IL 60047-6711
    Toll Free: 888.788.8050 • Phone: 847.726.6000
    Fax: 847.726.6051 • Email:[email protected]

    Archives

    May 2024
    April 2024
    March 2024
    September 2023
    July 2023
    June 2023
    April 2023
    November 2022
    September 2022
    July 2022
    April 2022
    January 2022
    November 2021
    August 2021
    June 2021
    May 2021
    March 2021
    February 2021
    December 2020
    November 2020
    October 2020
    August 2020
    November 2019
    October 2019
    July 2019
    June 2019
    May 2019
    April 2019
    February 2019
    January 2019
    December 2018
    October 2018
    September 2018
    August 2018
    May 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    August 2017
    June 2017
    May 2017
    March 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    November 2015
    October 2015
    September 2015
    August 2015
    June 2015

    Categories

    All
    3D Metal Printing
    3D Printing
    Additive Manufacturing
    Airlines
    Alternative Fuel Vehicles
    Argon
    Beyond Meat
    Breweries
    Build Chamber
    Butane
    Cannabinoids
    Cannabis
    Cannabis Extraction
    Carbon Capture
    Carbon Dioxide
    Carbon Dioxide Monitor
    Cbd
    CBD Oil
    Char
    Charring
    Chlorine
    Chlorine Gas
    Chlorine Safety
    CL2
    CNG
    CO2
    Cold Chain
    Combustible
    Combustible Gas
    Combustible Gas Monitor
    Compressed Gases
    Corrosion
    Covid-19 Vaccine
    Cryochamber
    Cryogenic
    Cryogenic Facilities
    Cryogenic Gases
    Cryopreservation
    Cryopump
    Cryo Spa
    Cryostorage
    Cryotherapy
    Disinfectant
    Disinfecting
    Disinfection
    Dry Ice
    Earthly Labs
    Eggs
    Electrolyte
    Embryos
    Ethanol
    Ethyl Alcohol
    Ethylene
    EtO
    Explosion Proof
    Extraction
    Fertility Clinic
    Flammable
    Flash-frozen
    Food
    Food Processing
    Food Spoilage
    Freeze-dried
    Freezer
    Gas
    Gas Detection
    Gas Detector
    Gas Detectors
    Gases
    Gas Leak
    Gas Leaks
    Gas Mixture
    Grow
    H2o2
    Hand Sanitizer
    Helium
    Heme
    Hopper
    Hot Melt Adhesive
    Hot Melt Foam Adhesive
    How To Monitor Oxygen Levels In A Room
    Hydrocarbon
    Hydrocarbon Solvent Extraction
    Hydrogen Fuel
    Hydrogen Peroxide
    Hydrogen Peroxide Vapor
    Impossible Foods
    Inert Gas
    In Vitro Fertilization
    IVF
    James Webb Telescope
    Laboratory Safety
    Leak Detection
    Leghemoglobin
    Lel
    Li-ion Battery
    Liquid Helium
    Liquid Nitrogen
    Liquid Nitrogen Leak
    Lithium-ion Battery
    LN2
    LNG
    Low Oxygen Environments
    Magnetic Resonance
    Medical Device
    Melt Tank
    Metal Powders
    Modified Atmosphere Packaging
    Monitoring
    Mri
    Mri O2 Monitor
    N2
    N95 Masks
    N95 Respirators
    Natural Gas
    Nema 4
    Nitrogen
    Nitrogen Blanketing
    Nitrogen Generator
    Nmr
    O
    O2
    O2/CO2 Monitor
    O2 Dry Ice
    Off-gas
    Osha
    Oxidation
    Oxide
    Oxygen
    Oxygen Analyzer
    Oxygen/carbon Dioxide Monitor
    Oxygen Deficiency
    Oxygen Deficiency Monitor
    Oxygen Deficiency Monitors
    Oxygen Depleting
    Oxygen Depletion
    Oxygen Detection
    Oxygen Displacement
    Oxygen Levels
    Oxygen Monitor
    Oxygen Monitoring
    Oxygen Monitors
    Pharmaceutical
    Plant Based Meat
    Porosity
    PPE
    Propane
    PureAire
    Sample Draw Oxygen Monitor
    Smart Sensor Cell
    Sterilization
    Sterilizing
    Superconductivity
    Surgical Devices
    Tank Blanketing
    Terpenes
    Thc
    Thermal Runaway
    Thermal Vacuum Chamber
    Titanium
    Trace Oxygen
    Tunnel Freezer
    Universal Gas Detector
    Vaccine
    Vaccine Storage
    Vaccine Transport
    Water Resistant
    Whole Body Cryotherapy
    Zirconium Oxide

Proudly powered by Weebly