PUREAIRE MONITORING SYSTEMS
  • Blog
  • Products
  • About
  • Contact
  • Blog

Monitoring Off-Gasses to Guard Against Thermal Runaway Risk with Li-Ion Batteries

4/1/2022

0 Comments

 
Picture
Lithium-Ion Batteries
Rechargeable lithium-ion (“li-ion”) batteries (comprised of cells in which lithium ions move from a negative electrode through an electrolyte to a positive electrode during discharge—and the other way around when charging) were first described conceptually in the 1970s.

Following initial prototype development in the 1980s, li-ion batteries became commercially viable in subsequent decades, and they are now commonly used in a variety of portable consumer electronic devices, including cell phones, laptops, and tablets.

Li-ion batteries also provide power for a broad array of automotive, aerospace, and commercial energy applications, such as electric vehicles (i.e., cars, trucks, buses, and trains), drones and satellites, and battery energy storage systems (or “BESS”, which enable power system operators and utilities to store energy—including that generated from renewable power sources—for later discharge and distribution as demand necessitates).

Analysts expect that the global size of the lithium-ion battery market will grow from some $40 billion in 2021 to over $115 billion by 2030, as users increasingly appreciate li-ion batteries for their rechargeability, large storage capacity, slow loss of charge when not in use, and high power to weight ratio.

However, those involved with li-ion battery production and usage must live with the inherent safety hazards involved with these batteries, as their electrolytes are flammable by nature, which can, at high temperatures, lead to fires and explosions.

Thermal Runaway Can Impact Lithium-ion Battery Safety
In 2019, a battery failure at an Arizona BESS facility operated by the Arizona Public Service (“APS”) utility resulted in an explosion that caused serious injuries to a number of firefighters. The APS site housed over 10,000 lithium-ion battery cells in 27 battery racks within a relatively small battery storage enclosure.

Authorities believe that the explosion, which they attributed to a chain reaction process knows as “thermal runaway”, was initiated by a failure in just one li-ion battery cell, which leaked explosive gas which, in turn, combusted as soon as the firefighters, responding to an alarm and reports of gas clouds emanating from the structure, opened the door and let oxygen into the storage enclosure.

Described simply, thermal runaway is an exothermic reaction in which li-ion battery cell temperatures rise rapidly in an uncontrollable self-exacerbating fashion. As cell temperatures rise, flammable and/or toxic gasses are vented (that is, “off-gassed”) from the battery.

While the gasses may not ignite immediately, the risk for a potential gas explosion remains. Ultimately, pressure from the buildup of gas can cause the cell to rupture and release toxic or explosive gasses (most commonly, carbon dioxide, carbon monoxide, fluorine, hydrogen, and methane, though there may be others).

An after-incident report commissioned by APS and released in 2020 listed a number of incidents from 2006-2017 involving thermal runaway events in lithium-ion batteries, including one on a tugboat in 2012 and another on a Boeing 787 in 2013.

There have been other such events as well including, memorably, a 2017 fire and explosion in Houston, TX on a train car that was transporting lithium-ion batteries to a recycling facility. The explosion broke windows in nearby buildings and, reportedly, sent a chemical stench throughout downtown Houston.

Off-Gas Monitoring Can Reduce the Risk of Thermal Runaway
Lithium-ion battery off-gassing, and subsequent thermal runaway, can occur due to manufacturing defects, mechanical damage or failures, overvoltage, excessive heat, or improper handling or storage.

Unfortunately, without reliable gas detectors in place, there is no sure way to know, until it is too late (i.e., when thermal runaway has actually started), that battery cells have in fact begun to off-gas.

To detect off-gasses, and protect against thermal runaway, best practices call for manufacturers, researchers, facility operators, storers, transporters, and others working with li-ion batteries to install high-quality gas detection monitors.

The gas detectors should continuously monitor all relevant areas and, if off-gas concentrations are detected, activate alarms and turn on ventilation systems.

PureAire Monitoring Systems
Picture
PureAire Monitoring Systems’ ST-48 Gas Detector tracks levels of toxic and/or combustible off-gasses including, but not limited to, carbon dioxide, carbon monoxide, fluorine, hydrogen, and methane.
The ST-48 is housed in a NEMA 7 explosion-proof enclosure suitable for Class 1, Divisions 1 and 2, Groups A, B, C, and D, making it ideal for locations (including li-ion storage facilities and electric vehicle manufacturing plants) where toxic and/or combustible gasses may accumulate.
PureAire’s ST-48 Gas Detector offers continuous readings of toxic and/or combustible gasses and features an easy-to-read screen, which displays current gas levels, in either parts per million (ppm) or lower explosive limit (LEL), for at-a-glance observation.
In the event of an accumulation of off-gasses to an unsafe level, the Detector will set off an alarm, complete with horns and flashing lights, alerting personnel to evacuate the area and contact appropriate first responders.
Importantly, the PureAire Gas Detector can be programmed to tie into ventilation systems when off-gas levels reach a user-selectable ppm or LEL, so that the gasses can be flushed before human life is jeopardized.
0 Comments

Coming Clean on Chlorine Safety

1/28/2022

0 Comments

 
Picture
What is chlorine?
Chlorine gas (CL2) is a dense, yellow-green gas that has a distinctive, irritating odor that is similar to bleach and is almost instantly noticeable even at very low concentrations. While CL2 is not flammable, it may react explosively when exposed to other gases, including acetylene, ether, ammonia, natural gas, and hydrogen, among others. Due to its reactivity, chlorine is rarely used in its pure form but instead is typically combined with other elements.

If you have ever taken a dip in a swimming pool, you are more than likely familiar with chlorine and its distinctive odor, as well as the burning sensation that sometimes affects the eyes. Chlorine is widely used as a disinfectant in swimming pools and in a variety of residential and industrial cleaning solutions, as well as in many everyday products.

Applications and Benefits of Chlorine Use
Chlorine gas is commonly used in water and wastewater treatment facilities to disinfect water and kill contaminants, thereby helping to prevent water-borne diseases such as cholera, typhoid fever, dysentery, and hepatitis A. In the same way, many people use chlorine bleach to disinfect and whiten laundry, as well as on household surfaces to kill germs such as norovirus, E.coli, salmonella, and other pathogens.

In addition to its disinfectant properties, CL2 is used in a variety of applications by a large number of industries. For instance:
  • The automobile industry utilizes chlorine in the manufacture of seat cushions and covers, headlamp lenses, tire cord, bumpers, sealants, paint, fan belts, airbags, brake fluids, and navigation systems.
  • Pharmaceutical manufacturers utilize chlorine in the production of medicines such as pain relievers, allergy medications, and drugs to help lower cholesterol.
  • Many industrial solvents, dyes, plastics, epoxy resins, and synthetic rubbers (such as neoprene), use chlorine in their manufacturing processes.
  • The paper and textile industries use chlorine to bleach paper and textiles.
  • Technology firms use chlorine in the production of a diverse array of goods, including microprocessors for smart phones and computers, pc boards, lasers, fiber optic cables, hybrid car batteries, satellite guidance systems, etc.
Chlorine Safety Well-known to be potentially hazardous to health, chlorine was one of the first poison gases used as a weapon during World War I.

Contact with chlorine can severely irritate and burn the eyes and skin. Exposure can also cause headaches, dizziness, nausea, and vomiting.

At high concentrations, and with prolonged exposure, inhalation of chlorine can cause sore throat, wheezing, coughing, chest tightness, pulmonary edema, permanent lung damage, and even death. While chlorine’s strong odor can provide some warning of its presence, prolonged exposure to chlorine can desensitize one’s sense of smell, thereby reducing awareness of the exposure.

Monitoring Chlorine
According to The Occupational Safety and Health Administration, the permissible exposure level for chlorine is 1 part-per-million (ppm), which should not be exceeded at any time.  Chlorine is considered to be immediately dangerous to life and health when exposure levels reach 10 ppm.

To detect, and protect against, risks emanating from excessive concentrations of chlorine, best practices include placing gas detection monitors (containing visual and audible alarms) in locations where CL2 may accumulate. The gas detection system should continuously monitor the area and, if chlorine concentrations exceed the permissible exposure limit of 1.0 ppm, activate an alarm, turn off the chlorine at the source, and turn on the ventilation system.
​
PureAire's Universal Gas Detector
Picture
PureAire Monitoring Systems’ Universal Gas Detectors use “smart” sensor cell technology to continuously track levels of chlorine. The sensor cell is programmed to monitor for a specific gas (in this case, chlorine) and measurement range, as required by the user.
PureAire's Universal Gas Detectors allow manufacturers to monitor chlorine levels before employee health is put at risk. In the event that CL2 is elevated to an unsafe level, the Universal Gas Detector will set off an alarm that includes horns and flashing lights, alerting staff to vacate the affected area. At the same time, the monitor can be programmed to turn on the ventilation system.
The Universal Gas Detector's easy to read screen makes it simple for employees to monitor chlorine gas levels at a glance, giving them peace of mind as they work with this useful but hazardous gas.
0 Comments

Protecting Against Oxygen Deficiency Risk

11/9/2021

0 Comments

 
Picture
What is Oxygen Deficiency?
The air we breathe is made up of 78% nitrogen, 21% oxygen, and trace amounts of other gases such as carbon dioxide, neon, and hydrogen. The Occupational Safety and Health Administration (OSHA) defines an environment in which oxygen levels fall below 19.5% as an oxygen-deficient atmosphere, which should be treated as immediately dangerous to health or life.

How is Oxygen Deficiency Dangerous?
Oxygen deficiency is often called a silent killer, because there are no warning signs when oxygen concentrations drop to an unsafe level.

Inhaling just a few breaths of oxygen-deficient air can have immediate negative effects, which may include impaired coordination, accelerated respiration, elevated heart rate, nausea, vomiting, loss of consciousness, convulsions, or even suffocation due to a lack of sufficient oxygen.

Where can Oxygen Deficiency Occur?
Oxygen deficiency can occur in any location where compressed oxygen-depleting gases are used, stored, or may accumulate.

Industries that commonly use these types of gases include, but are not limited to, laboratories, MRI, food and beverage, cryogenic facilities, aerospace, pharmaceutical, research and development, alternative fuel, waste management, semiconductor, additive manufacturing, and the oil and gas sectors.

Manufacturers and other organizations utilizing compressed, oxygen-depleting gases in their operations need to successfully navigate complex working environments in which high concentrations of such gases may be critical to production procedures, but where the risks of oxygen deficiency may pose a potential safety hazard for their employees.

Fortunately, by utilizing a top-quality oxygen deficiency monitor, facility managers can maintain stringent processing requirements, as well as protect the health and safety of their personnel.

What is an Oxygen Deficiency Monitor?
Picture
An oxygen deficiency monitor is a device that measures oxygen levels in a particular area. By continuously tracking oxygen levels, oxygen deficiency monitors are designed to detect oxygen-depleting gas leaks before employee health is jeopardized.

A number of oxygen-depleting gases, including nitrogen, helium, carbon dioxide, and argon, among others, are both odorless and colorless. As such, unless they are using a reliable oxygen deficiency monitor, personnel working with such gases would likely be unable to detect a gas leak should one occur in a gas cylinder or line, and they could likewise be unaware that they were breathing oxygen-deficient air.

​PureAire Oxygen Deficiency Monitors

Picture
PureAire Monitoring Systems’ line of Oxygen Deficiency Monitors offers thorough air monitoring, with no time-consuming maintenance or calibration required. An easy-to-read screen displays current oxygen levels for at-a-glance reading by employees, who derive peace of mind from the Monitor’s presence and reliable performance.
​
Our Monitor continuously tracks oxygen levels and, in the event of a gas leak and a drop in oxygen to an OSHA action level, will set off an alarm, complete with horns and flashing lights, alerting employees to evacuate the affected area.

The Monitor will remain accurate at temperatures as low as -40C. PureAire's durable, non-depleting, long-life zirconium oxide sensor will last for 10+ years in a normal environment without needing to be replaced.

To reduce risk to personnel, PureAire's optional Remote Digital Display may be placed well outside of high risk rooms (up to 250 feet from the Monitor itself), where it will safely exhibit oxygen levels inside the room.
0 Comments

Air Delivery of Super-Cooled COVID-19 Vaccines

12/8/2020

0 Comments

 
Picture
There are several potential COVID-19 vaccines that may soon be available for widespread distribution. In particular, the United Kingdom has recently approved Pfizer’s vaccine, and the U.S. Food and Drug Administration is considering extending Emergency Use Authorization to the Pfizer and Moderna vaccines.

That is certainly promising news, but storage, transportation, and delivery of these potentially game-changing vaccines will be quite challenging, with the CEO of the International Air Transport Association describing the distribution of COVID-19 vaccines as “the largest and most complex logistical exercise ever” undertaken.

It is not just the huge numbers (literally, in the billions of doses) and vast geographic scope (worldwide, requiring delivery to every country on the planet) that make the COVID-19 vaccine distribution task so daunting, but both the Pfizer and Moderna vaccines must be stored and transported in strict climate-controlled environments (reportedly, at some -70 degrees Celsius for Pfizer, and -20 degrees Celsius for Moderna) as integral parts of the vaccines’ “cold chains.”

COVID-19 Vaccine Cold Chain

The U.S. Centers for Disease Control (the “CDC”) describes a cold chain as a temperature-controlled supply chain that includes all vaccine-related equipment and procedures. The vaccine cold chain begins with a cold storage unit at the vaccine manufacturing plant, extends to the transport and delivery of the vaccine (including proper storage at the provider facility), and ends with the administration of the vaccine to the patient. A breakdown in protocols anywhere along the cold chain could reduce the effectiveness of, or even destroy, a vaccine.

Given the extreme cold temperatures required within their cold chains by the Pfizer and Moderna vaccines (and, perhaps, other COVID-19 vaccines that may now be under development by other firms), various companies with the vaccine delivery network (including temperature-controlled container manufacturers, logistics specialists, storage facility operators, commercial airlines, and dry ice producers) have been hard at work for months to meet the challenges associated with safely storing and transporting billions of vaccine doses once, as now appears to be at hand, they finally become available for international distribution.

Creating Super-Cold Environments

Dry ice, which is the common name for solid (i.e., frozen) carbon dioxide, is often used in cold chains to maintain the very cold temperatures required to keep certain vaccines viable. At a temperature of approximately -78.5 degrees Celsius (equating to -109.3 degrees Fahrenheit), dry ice is significantly colder than frozen water (that is, conventional ice), making it ideal for transport and storage of those vaccines which require an extremely cold temperature environment.

Safety precautions are critical when shippers use dry ice in the transportation and storage of vaccines. Unlike conventional ice, dry ice does not melt into a liquid. Instead, dry ice “sublimates” (changes from a solid to a gas state), turning into carbon dioxide gas. In poorly ventilated, confined spaces, such as storage rooms, railway cars, trucks, and cargo holds in airplanes, carbon dioxide can build up, creating a potentially serious health risk to transportation workers, including ground and flight crews.

Certain vaccine manufacturers may elect to ship their vaccines in multi-layered, storage canisters chilled with liquid nitrogen, rather than dry ice. We note that the potential health risks associated with nitrogen leaks are similar to those that may be caused by dry ice sublimation.

Oxygen Deficiency Risks Associated with Super-Cooled Environments

Carbon dioxide (as is nitrogen) is an oxygen-depleting gas that is both odorless and colorless. As such, absent appropriate monitoring, personnel working with the transportation of COVID-19 and other vaccines kept frozen with dry ice or liquid nitrogen likely would be unable to detect if dry ice were to sublimate (causing CO2 levels to rise), or if there were a nitrogen gas leak, and an associated decrease in oxygen.

According the Occupational Safety and Health Administration (OSHA), an environment in which oxygen levels fall below 19.5 percent is considered an oxygen-deficient atmosphere and should be treated as immediately dangerous to health or life. When there is not enough oxygen in the air, persons working in the affected area may become disoriented, lose consciousness, or even suffocate due to the lack of sufficient oxygen.

FAA Guidance/Increased Air Shipment Capacity/Risk Mitigation

On May 22, 2009, the U.S. Federal Aviation Administration (the “FAA”) issued Advisory Circular No. 91-76A to specifically address the risks associated with the sublimation of dry ice aboard aircraft and, historically, the FAA has permitted even widebody aircraft to carry only relatively small amounts (typically not exceeding 1-1.5 tons per flight) of dry ice in refrigerated and insulated containers.

However, The Wall Street Journal (the “WSJ”) reported on November 29, 2020 that, in order to maintain the ultra-cold temperatures required by Pfizer’s COVID-19 vaccine, United Airlines has recently sought, and obtained, FAA approval to carry up to 15, 000 pounds (7.5 tons) of dry ice per flight. In a December 2, 2020 interview with CNN, Josh Earnest, Chief Communications Officer with United Airlines, noted that the FAA approval will allow United to ship as many as 1.1 million doses of COVID-19 vaccines on each flight of its commercial 777 airplanes.

Notwithstanding the FAA’s relaxation of dry ice weight limits to permit United Airlines to help bring the COVID-19 pandemic under control, it remains focused on risks associated with air shipments of dry ice. In its November 29, 2020 reporting, the WSJnoted that “regulators restrict the amount of dry ice that can be carried on passenger jets because they typically lack equipment to monitor and mitigate any leaked carbon dioxide.”

Fortunately, by utilizing a top-quality oxygen-deficiency monitor, vaccine storage and transportation personnel, including flight crews, can safely track levels of oxygen and detect (and react to) potentially dangerous low oxygen levels, whether caused by dry ice sublimation or a nitrogen gas leak.

PureAire Monitoring Systems, Inc.
Picture
PureAire Monitoring Systems’ Oxygen Deficiency Monitor offers thorough air monitoring, with no time-consuming maintenance or calibration required. A screen displays current oxygen levels, for at-a-glance reading by crew members, who derive peace of mind from the Monitor’s presence and reliable performance.

Built with zirconium oxide sensor cells, to ensure longevity, the Monitor can last, trouble-free for 10 years in normal working conditions.

Our Oxygen Deficiency Monitor does not rely on the partial pressure of oxygen to operate, meaning that the Monitor is not affected by the changing pressure inside an aircraft due to altitude changes. In the event that dry ice begins to sublimate (causing carbon dioxide levels to rise), or if there is a nitrogen leak, and oxygen decreases to unsafe levels, PureAire’s Monitor will set off an alarm, complete with horns and flashing lights, alerting flight personnel to take corrective action.
​
For over 20 years, PureAire Monitoring Systems has been an industry leader in manufacturing long-lasting, accurate, and reliable Oxygen Deficiency Monitors. We have dedicated ourselves to ensuring the safety and satisfaction of our clients, many of which have very sophisticated operating requirements. We are proud to note that NASA’s SOFIA-Stratospheric Observatory for Infrared Astronomy--a Boeing 747SP aircraft modified to carry a 2.7 meter (106 inch) reflecting telescope--carries onboard a PureAire Oxygen Deficiency Monitor.
0 Comments

What are Oxygen Deficiency Monitors?

12/1/2020

0 Comments

 
Picture
 What is an Oxygen Deficient Environment?
The Occupational Safety and Health Administration (OSHA) defines an environment in which oxygen levels fall below 19.5 percent asan oxygen deficient atmosphere, which should be treated as immediately dangerous to health or life. When there is not enough oxygen in the air, persons within the affected area may become disoriented, lose consciousness, or even suffocate due to the lack of sufficient oxygen.

An oxygen deficient environment may be created when oxygen is displaced by inertgases, such as nitrogen, helium, argon, or carbon dioxide. Therefore, manufacturers and other organizations utilizing inert gases in their operations need to successfully navigate complex working environments in which high concentrations of such gases may be critical to production procedures, but where the risks of oxygen deficiency may pose potential safety hazard for their employees.

Fortunately, by utilizing a top-quality oxygen deficiency monitor, facility managers can maintain stringent processing requirements, as well as protect the health and safety of their personnel.

What is an Oxygen Deficiency Monitor?
An oxygen deficiency monitor is a device that measures the oxygen levels in a particular area. By continuously tracking oxygen levels, oxygen deficiency monitors are designed to detect gas leaks from oxygen-depleting gases before employee health is jeopardized.

A number ofgases, including nitrogen, helium, carbon dioxide, and argon, among others, are odorless, colorless, oxygen-depleting gases. As such, unless they are using a reliable oxygen deficiency monitor, personnel would likely be unable to detect a gas leak should one occur in a gas cylinder or line.

Which Industries Should Use Oxygen Deficiency Monitors?
Oxygen deficiency monitors contribute to safe working environments in any scientific or industrial application utilizing oxygen-depleting gases and, therefore, requiring continuous monitoring of oxygen levels. For instance:
  • The medical industry uses inert gases for a variety of purposes, including MRI facilities, performing cryosurgery, invitro fertilization and cryostorage facilities, and for blood and tissue preservation, while laboratories typically use compressed gases including argon, nitrogen, and carbon dioxide.
  • Pharmaceutical manufacturers depend upon gases such as nitrogen and carbon dioxide to maintain sterile environments throughout the drug manufacturing and packaging processes.
  • The food and beverage industries rely on carbon dioxide and nitrogen gas for a range of uses. By way of example, carbon dioxide carbonates beverages in bars, fast food establishments, and restaurants, and it is a critical component in the productions of soft drinks and beer.Nitrogen gas is important in food preservation processes, where it is used to remove oxygen from the manufacturing environment, extend product shelf life, and decrease the likelihood of spoilage.
  • Semiconductor fabricators and foundries must closely monitor process gas levels, as an improper amount of gas can ruin the quality and integrity of the components and devices being manufactured.
The foregoing bullet points highlight just a few of the industries that need oxygen deficiency monitors as part of their daily operations. Others include aerospace, cryotherapy, additive manufacturing, research and development, alternative fuel, waste management, and the oil and gas sectors.

PureAire Oxygen Deficiency Monitors
Picture
PureAire Monitoring Systems’ line of oxygen deficiency monitors offer thorough air monitoring, with no time-consuming maintenance or calibration required. Our monitor continuously tracks oxygen levels and, in the event of a gas leak and a drop in oxygen to an OSHA action level, will set off an alarm, complete with horns and flashing lights, alerting employees to evacuate the affected area.

The monitor will remain accurate at temperatures as low as -40C. PureAire’s durable, non-depleting, long-life zirconium oxide sensor will last for 10+ years in a normal environment without needing to be replaced.

Where Should Oxygen Deficiency  Monitors Be Installed?
Oxygen deficiency monitors should be installed 3 to 5 feet away from a gas cylinder or gas line, and in any location where there is a risk of gas leaks that may cause a drop in oxygen to an unsafe level.  So that employees can see the monitors and verify their performance, the monitors should typically be mounted 3 to 5 feet off the ground.

There are many other configurations for mounting. For instance, PureAire oxygen deficiency monitors  can sample oxygen levels from up to 100 feet away using ¼  inch tubing, or be installed within a glovebox, freezer, gas line, sealed chamber, or even below ground level. PureAire oxygen deficiency sensors can be mounted directly in vacuum chambers with the use of a KF25 vacuum fitting.
​
How Many Oxygen Deficiency Monitors Do I need?
To ensure safety, PureAire generally recommends that one monitor be installed for every 400 square feet of your facility’s space. However, since cryogenic gases, such as argon, helium, and nitrogen, are unpredictable, we encourage you to contact PureAire for additional guidance specific to your needs.
0 Comments

Don't Throw Away Your Shot...the Cold Truth About Vaccine Handling and Storage

11/18/2020

0 Comments

 
Picture
Overview
In modern times, vaccines have been widely used to keep people healthy by protecting them from serious illnesses and diseases. Worldwide, vaccines annually prevent millions of deaths, and their utilization is responsible, in many parts of the globe, for the nearly total eradication of numerous diseases, including polio, measles, and smallpox.

According to the U.S. Centers for Disease Control (the "CDC"), a vaccine for a specific disease stimulates an individual's immune system, causing it to produce antibodies to counteract the antigens associated with the disease in question, just as one's immune system would do if one were actually exposed to the disease. The concept is that, after getting vaccinated, the inoculated patient develops immunity to the disease without first having to contract it. Unlike medicines, which are used to treat or cure diseases, vaccines are intended to prevent them.

Handling and Storage of Vaccines
Developing a vaccine can take years before it is deemed safe for human use and, thereafter manufactured and made available for widespread distribution and inoculation. Throughout the manufacturing and  distribution process, and up to the time of administration, a vaccine must be kept in strict climate-controlled environments, collectively referred to as the "cold chain." The CDC describes a cold chain as a temperature-controlled supply chain that includes all vaccine-related equipment and procedures. The vaccine cold chain begins with a cold storage unit at the vaccine manufacturing plant, extends to the transport and delivery of the vaccine (including proper storage at the provider facility), and ends with the administration of the vaccine to the patient. A breakdown in protocols anywhere along the cold chain could reduce the effectiveness of, or even destroy, a vaccine.

According to FedEx, while most  vaccines have traditionally been transported in a cold temperature range of 2 degrees Celsius to 8 degrees Celsius, certain vaccine manufacturers and pharmaceutical firms require a much lower temperature range within the cold chain associated with specific vaccine products.

Dry ice, which is the common name for solid (i.e., frozen) carbon dioxide, is often used in cold chains to maintain the very cold temperatures required to keep certain vaccines viable. At a temperature of approximately -78.5 degrees Celsius (equating to  -109.3 degrees Fahrenheit), dry ice is significantly colder than frozen water (that is, conventional ice), making it ideal for transport and storage of those vaccines requiring an extremely cold temperature environment.

Safely Tracking Carbon Dioxide Levels When Working with Dry Ice
Safety precautions are critical when shippers use dry ice in the transportation and storage of vaccines. Unlike conventional ice, dry ice does not melt into a liquid. Instead,  dry ice "sublimates" (changes from a solid to a gas state), turning into carbon dioxide gas. In small, poorly ventilated spaces, such as storage rooms and closets, cargo vans, trucks, and airplanes, carbon dioxide can build up, creating a potentially serious health risk.

Carbon dioxide is an oxygen-depleting gas that is both odorless and colorless. As such, absent appropriate monitoring, workers involved with the transportation and/or storage of products frozen with dry ice likely would be unable to detect if dry ice were to begin to sublimate, with carbon dioxide gas levels possibly rising to unsafe levels. When there is not enough oxygen in the air, persons working in the affected area may become disoriented, lose consciousness, or even suffocate due to the lack of oxygen

Fortunately, by utilizing a top-quality oxygen monitor, also known as an oxygen deficiency monitor, vaccine transportation storage personnel can track oxygen levels and detect (and react to) dangerous carbon dioxide levels before employee health is jeopardized.
​
PureAire Dual Oxygen/Carbon Dioxide Monitor
Picture
PureAire Monitoring Systems' Dual Oxygen/Carbon Dioxide Monitor offers thorough air monitoring, with no time-consuming maintenance or calibration required.  A screen displays current oxygen and carbon dioxide levels, for at-a-glance reading by employees, who derive peace of mind from the Monitor's presence and reliable performance.
In the event that dry ice begins to sublimate, causing carbon dioxide levels to rise, and oxygen to decrease to unsafe levels, PureAire's Monitor will  set off an alarm, complete with horns and flashing lights, alerting personnel to evacuate the area.
​
Our Dual Oxygen/Carbon Dioxide Monitor is well-suited for industries where dry ice is used, such as in the handling, transportation, and storage of life-saving vaccines. The Monitor includes both a non-depleting, zirconium oxide sensor cell, to monitor oxygen levels, and a non-dispersive infrared (NDIR) sensor cell, to monitor carbon dioxide levels. Known for their dependability, PureAire's O2/CO2 Monitors can last, trouble free, for over 10 years under normal operating conditions.
0 Comments

Brewers Safely Capture and Reuse Carbon Dioxide

11/11/2020

0 Comments

 
Picture
 Overview
Brewing beer produces carbon dioxide (CO2), especially during fermentation (the process by which yeast converts sugars into alcohol). Estimates are that fermentation yields three times as much carbon dioxide as is actually needed to produce (including brewing, canning, and bottling) each batch of beer, with up to 15 grams of CO2 generated per pint of beer brewed. According to the British Beer & Pub Association, over 8 billion pints of beer were consumed in the United Kingdom alone in 2019, contributing to the production of a whole lot of carbon dioxide.

While large, global breweries, with their vast financial resources, have been recapturing and reusing carbon dioxide for a number of years, most craft brewers have considered carbon recapture technology to be prohibitively expensive. They have treated excess CO2 as waste, and vented it into the atmosphere, though that practice may make little sense, either economically or environmentally since, in order to produce subsequent batches, brewers must then turn around and purchase carbon dioxide to carbonate the beer, purge beer tanks and lines of oxygen, and to transfer the beer from tanks to bottles or cans.

And carbon dioxide purchase is a recurring line item expense that eats into craft brewers’ profit margins.

Capturing and Reusing Carbon Dioxide
The good news is that recent technological innovations, driven in large part by companies working with NASA on space exploration and investigation, have led entrepreneurs to an awareness that CO2 recapture may in fact now be seen as a relatively affordable, and certainly environmentally friendly, option for craft breweries. The technology involves capturing the CO2 that has accumulated during fermentation and purifying the gas to make it suitable for reuse and/or sale.

The Washington Post has reported that Texas-based Earthly Labs has created a product called “CiCi” (for “carbon capture”), a refrigerator-sized unit that enables brewers to trap and reuse accumulated carbon dioxide. Captured CO2 is piped from the fermentation tanks to a “dryer” to separate water from CO2gas. The gas is next purified and chilled to a liquid for ease of storage and subsequent use.

Brewers can reuse their stored carbon dioxide to carbonate new batches of beer, as well as in the canning and bottling processes for the new beer. Craft Brewing Business, a trade website dedicated to the business of commercial craft brewing, reports that breweries can reduce monthly carbon dioxide expenses by 50 percent or more, and CO2 emissions by up to 50%, via carbon capture technology.

Breweries that capture more CO2 than they can use, may elect to sell the surplus to other breweries, bars, restaurants, and any other businesses that also use carbon dioxide. For instance, the State of Colorado, Earthly Labs, the Denver Beer Co. and The Clinic announced in early 2020 a pilot program in which Denver Beer Co. would sell its surplus CO2 to The Clinic, a medical and recreational cannabis dispensary, which would then pump the carbon dioxide inside its grow rooms to stimulate and enrich plant growth.

Oxygen Monitors Can Mitigate Unseen Dangers of Carbon Dioxide
Brewers and others working around carbon dioxide need to be aware of the potential risks associated with CO2. Carbon dioxide is an odorless and colorless oxygen-depleting gas. Since it deprives the air of oxygen, CO2 use presents a potential health hazard for brewery personnel.

According to the Occupational Safety and Health Administration (OSHA), an environment in which oxygen levels fall below 19.5 percent is considered an oxygen deficient atmosphere and should be treated as immediately dangerous to health or life. When there is not enough oxygen in the air, persons working in the affected area may become disoriented, lose consciousness, or even suffocate due to the lack of sufficient oxygen. Because CO2 is devoid of odor and color, individuals working around it might well, in the absence of appropriate monitoring equipment, be unaware that a risk situation has developed.

As such, The National Fire Protection Association recommends that gas monitoring equipment be placed in storage areas or any place where carbon dioxide is used or stored.

PureAire Dual O2/CO2 Monitors
Picture
PureAire Monitoring Systems’ Dual Oxygen/Carbon Dioxide Monitor offers thorough air monitoring, with no time-consuming maintenance or calibration required. A screen displays current oxygen and carbon dioxide levels for at-a-glance reading by brewery employees, who derive peace of mind from the Monitor’s presence and reliable performance.

In the event of a carbon dioxide leak, and a decrease in oxygen to an unsafe level, PureAire’s Monitor will set off an alarm, complete with horns and flashing lights, alerting brewery personnel to evacuate the area.

PureAire’s Dual Oxygen/Carbon Dioxide Monitor is well-suited for facilities where carbon dioxide is used, such as breweries, bars, and restaurants. Our Dual O2/CO2 monitor includes both a non-depleting, zirconium oxide sensor cell, to monitor oxygen levels, and a non-dispersive infrared (NDIR) sensor cell, to monitor carbon dioxide levels. PureAire’s O2/CO2 monitors can last, trouble-free, for over 10 years under normal operating conditions.
​
Saving money, reducing greenhouse gas emissions, and ensuring employee safety...that is certainly something to which we can all raise a glass.
0 Comments

August 18th, 2020

8/18/2020

0 Comments

 

What Are Hot Melt Adhesives? Why Are They Used and What Is the Importance Of Nitrogen Gas?

Picture
Picture
Hot Melt Adhesives and Available Types Used in Industrial Manufacturing
Industrial hot melt adhesives are polymer-based thermoplastic resins that, when melted, are used to bond materials together. Hot melt adhesives are comprised of one or more base polymers combined with tackifiers (which provide stickiness to the adhesive), plasticizers (to provide greater flexibility), and antioxidants (for protection against degradation) to allow for stability, adhesion, and flexibility.
Industrial hot melt is available in a variety of forms, including granular or powder hot melt blocks, pellets, bags, cakes, drums, and pillows. These materials are solid at room temperature, and then heated, melted, and dispensed for a variety of industrial applications.  As the adhesive returns to room temperature, a strong bond is created, adhering the manufacturing components together.
Hot melt can be dispensed as a liquid or, by introducing an inert gas (such as nitrogen) to the hot melt, as a foam.
Industrial Hot Melt Applications
In either liquid or foam form, hot melt adhesive is used across a wide variety of industries including  aerospace; automotive; product assembly; furniture making, cabinetry, and upholstery; product packaging; book binding; and non-woven sanitary hygiene products.
Aerospace and automobile manufacturers utilize hot melt adhesives for potting electronics (a process used to protect sensitive components from impact or vibration), as well as sealing rivets, seams, and joints. Additionally, hot melt foam is used in airplanes and cars as insulation around doors and windows to reduce vibrations and noise, as well as in seat assembly.
The pages in books and magazines are kept securely bound together using HMAs. The packaging industry depends on a strong adhesive bond to keep the flaps of corrugated boxes and cartons securely closed.
Non-woven personal hygiene products are manufactured by utilizing hot melt adhesives throughout the manufacturing process, including adhering the elastic strands in the leg openings and waistbands, bonding the fabric layers together to secure and stabilize the wetness core, and affixing the fastening tapes to the waistband.
Charring
Charring is a key concern when working with hot melt adhesives, as char (degraded adhesives that have oxidized, hardened into a gel, and been blackened and burned) can negatively affect the adhesives, cause equipment failure, and lead to a shut-down in production.
Key causes of charring include overheating (typically as a result of either using a temperature that is too high for a particular hotmelt, excessive heating times, or incorrect melt tank size); oxidation (exposing the adhesives to too much oxygen), and contamination (from dirt, dust and other materials that fall into the hot melt and burn).
Once formed, the char can break off into pieces that may clog filters and stop up spray and bead nozzles. The pieces of char can work their way onto the materials to be bonded, leaving marks, streaks, and uneven surfaces. Eventually, bits of char may get into hoses and pumps, breaking seals and scoring and damaging hoses and pump walls.
Why Nitrogen is Used for Hot Melt Adhesive
To reduce potential damage from charring, hot melt operators may elect to blanket the adhesives with nitrogen (N2) in a process by which nitrogen, an oxygen depleting gas, is piped into the space between the hot melt adhesive and the top of the hopper or melt tank. The nitrogen blanket protects the adhesive by creating a barrier against falling debris, and it also removes oxygen and moisture which may cause the hotmelt to oxidize and form char .
Oxygen Monitors Improves Quality Control and Helps Protect Employees
To preserve the integrity of the hot melt while blanketing with nitrogen, employees must maintain proper oxygen levels within hoppers or melt tanks, as too much oxygen can cause oxidation. Proper oxygen monitoring equipment should be placed inside melt tanks to measure and control oxygen levels.  A nitrogen leak could lead to failure of the nitrogen blanket, which could compromise the integrity of the adhesives.
Moreover, wherever nitrogen is used, the possibility of nitrogen leaks poses potential risks to humans. Since nitrogen displaces oxygen, a leak could deprive the air of oxygen, thereby creating a possible health hazard for personnel. When there is not enough oxygen in the air, persons working in the area can become disoriented, lose consciousness, or even suffocate due to the lack of oxygen. Since nitrogen lacks color and odor, there is no way, absent appropriate monitoring, for employees to detect a leak.
Best practice calls for oxygen deficiency monitors to be installed anywhere there is a risk of gas leaks. As such, oxygen monitors should be placed wherever nitrogen is stored, and in all areas where nitrogen is used.
PureAire O2 Deficiency Monitors
PureAire Monitoring Systems’ line of Oxygen Deficiency Monitors and Water Resistant Sample Draw Oxygen Monitors continuously track levels of oxygen and will alert hotmelt personnel to nitrogen leaks before employees’ health is put at risk.  In the event of a nitrogen gas leak, and a decrease in oxygen to an unsafe level, the monitor will set off an alarm, complete with horns and flashing lights, alerting employees to evacuate the area.
PureAire’s Water Resistant Sample Draw Oxygen Monitor is a self-contained oxygen deficiency system that is suitable for remote sampling of oxygen levels in confined spaces, hot melt tanks, and other locations where remote oxygen monitoring is required. The built-in pump samples oxygen levels from up to 100 feet away.
​
PureAire oxygen monitors measure oxygen 24/7, with no time-consuming maintenance or calibration required. Built with zirconium oxide sensor cells to ensure longevity, PureAire’s O2 monitors can last, trouble-free, for over 10 years under normal operating conditions.Each PureAire O2 monitor has an easy to read screen, which displays current oxygen levels, for at-a-glance readings by hot melt manufacturers, who derive peace of mind from the monitor’s presence and reliability.

0 Comments

August 17th, 2020

8/17/2020

0 Comments

 

Pharmaceutical Companies Rely on Nitrogen

Picture
Pharmaceutical firms research, develop, and manufacture over-the-counter and prescription drugs and medicines. Usage of these drugs includes, but is not limited to, vaccinations, treatment for chronic conditions, and pain management.
To protect the health and well-being of the public, the pharmaceutical industry is one of the most highly regulated industries. For instance, in the United States, the Food and Drug Administration (FDA) carefully monitors pharmaceutical companies to ensure they are complying with the FDA’s Current Good Manufacturing Practice regulations. These regulations contain requirements for the methods, facilities, and controls used in the manufacturing, processing, and packaging of a drug product.  The regulations are intended to ensure that a product is safe for use, and that it contains the ingredients and strengths it claims to have.
Pharmaceutical Manufacturers Rely on Nitrogen
Pharmaceutical manufacturers rely on nitrogen(N2) (an abundant, inert gas which makes up 78% of the air we breathe) for a wide range of uses, including everything from mixing raw materials, to cryogenic grinding (a process using liquid nitrogen to create ultra-fine, uniform particles), to purging oxygen from packaging.
A sterile environment is critical throughout the drug manufacturing and packaging processes. Nitrogen is used to remove oxygen (O2), moisture, and other possible contaminants, in order to create and maintain a sterile environment for production and packaging.
Nitrogen blanketing is the process by which pharmaceutical manufacturers create an inert, non-reactive, environment for safely mixing chemical compounds. Blanketing with nitrogen safeguards against corrosion and oxidation, and prevents possible volatile reactions that might occur if O2 were present, as some medicinal compounds can be highly combustible when exposed to oxygen.
Oxygen and moisture are purged from packaging not only to maintain sterility but also to protect products during transport, and prolong the stability and shelf life of the packaged drugs.
Oxygen Monitors Can Reduce Risk in Pharmaceutical Manufacturing Facilities Utilizing Nitrogen
Nitrogen is an oxygen-depleting gas that is both odorless and colorless. As such, absent appropriate monitoring, workers would be unable to detect a nitrogen leak if one were to occur in a gas cylinder or line. When there is not enough oxygen in the air, persons working in the area can become disoriented, lose consciousness, or even suffocate due to the lack of oxygen.
Fortunately, by utilizing a top-quality oxygen monitor, also known as an oxygen deficiency monitor, pharmaceutical personnel can track oxygen levels and detect nitrogen leaks before an employee’s health is jeopardized.
PureAire Monitors
PureAire Monitoring Systems’ oxygen deficiency monitors continuously track levels of oxygen and will detect nitrogen leaks before the health of pharmaceutical personnel is put at risk. Built with zirconium oxide sensor cells to ensure longevity, PureAire’s O2 monitors can last, trouble-free, for over 10 years under normal operating conditions.  In the event of a nitrogen gas leak, and a decrease in oxygen to an unsafe level, the monitor will set off an alarm, complete with horns and flashing lights, alerting employees to evacuate the area.
Best practice calls for oxygen deficiency monitors to be installed anywhere there is a risk of gas leaks. The oxygen monitors should be placed wherever nitrogen is stored, and in all rooms and areas where nitrogen is used.
PureAire oxygen monitors measure oxygen 24/7, with no time-consuming maintenance or calibration required.
Each PureAire O2 monitor has an easy to read screen, which displays current oxygen levels, for at-a-glance readings by pharmaceutical manufacturing personnel, who derive peace of mind from the monitor’s presence and reliability.
Picture
0 Comments

August 15th, 2020

8/15/2020

0 Comments

 

Butane for THC and CBD Extraction Trend Requires Some Simple Steps to Stay Safe

Picture
Picture
On May 17th, 2020, twelve firefighters were injured after an explosion occurred at a facility where butane is used for cannabis extraction. It is not yet known if butane was the cause of the explosion but, it was reported that, butane canisters where found in and around the building. The investigation is ongoing.
According to a Politico article, following an uptick in explosions in Colorado, fire officials there persuaded the National Fire Protection Association, which establishes a fire code for the whole country, to amend its rules to address hazards at facilities that grow and extract marijuana. The revised code requires any hazardous extraction process to be performed in a non-combustible room, in a building that contains no child or health care facilities. Staff must be trained on safe operation of the extraction equipment, and the extraction room must be equipped with a gas detection system and multiple fire extinguishing systems.
Extraction
Extraction is a process by which desired chemical compounds are extracted and separated from the cannabis plant. Extraction strips the plant of essential oils, including CBD, THC, and terpenes (aromatic oils that give cannabis plants their distinctive scents). The extracted oils can be utilized in vape pens, edibles, capsules, tinctures, and topical solutions.
Butane is one technique used to separate essential oils from the plant material. The use of butane for extraction is popular owing, in large part, to the relatively low overhead costs, efficiency (including the wide variety of products that can be created from a single extraction, without the need for further refinement), and high product quality associated with this technique. For instance, the low boiling point of butane allow extractors to remove the desired compounds without risking evaporation of, or damage to, the delicate and heat-sensitive cannabinoids and terpenes. Moreover, the low boiling point makes it relatively easy to purge any residual butane at the end of the extraction process, leaving behind only a relatively pure product.
Gas Detection Monitors Can Protect Extractors and Their Employees
While butane is important for extracting essential oils from cannabis plants use of this gas is not without risk, since extraction facility personnel and property are exposed to potential leaks from gas supply lines and storage containers. Butane is highly flammable and explosive gas as well.  Absent appropriate gas monitoring, an explosion can occur if butane vapors are ignited by a spark, heat, or open flame.
Proper gas detection equipment should be placed where the cannabis extraction process takes place, as well as in butane storage rooms, and in any other site where butane may be expected to accumulate. The gas detection equipment should include the capacity to activate visual and audible alarms, stopping the flow of gas and turning on the ventilation system.
PureAire Monitors
PureAire Monitoring Systems has safety monitors to meet the needs of cannabis extractors using butane. Extractors utilizing butane rely on PureAire’s LEL, explosion-proof, combustible gas monitors. The monitor is housed in a NEMA 4 enclosure specifically designed to prevent an explosion. The durable, long-life LEL catalytic sensor will last 5+ years without needing to be replaced.

​
PureAire monitors feature an easy to read screen, which displays current levels for at-a-glance observation by employees, who derive peace of mind from the monitor’s presence and reliable performance. In the event of a gas leak, PureAire’s monitors will set off alarms, complete with horns and flashing lights, alerting personnel to evacuate the area. At the same time, the monitors can be programmed to turn off the flow of butane and turn on the ventilation system.
In short, PureAire’s monitors enable cannabis extractors, in a cost-effective manner, to preserve both the quality of their products and the well-being of their employees.

0 Comments
<<Previous

    1140 Ensell , Lake Zurich IL 60047-6711
    Toll Free: 888.788.8050 • Phone: 847.726.6000
    Fax: 847.726.6051 • Email:[email protected]

    Archives

    May 2024
    April 2024
    March 2024
    September 2023
    July 2023
    June 2023
    April 2023
    November 2022
    September 2022
    July 2022
    April 2022
    January 2022
    November 2021
    August 2021
    June 2021
    May 2021
    March 2021
    February 2021
    December 2020
    November 2020
    October 2020
    August 2020
    November 2019
    October 2019
    July 2019
    June 2019
    May 2019
    April 2019
    February 2019
    January 2019
    December 2018
    October 2018
    September 2018
    August 2018
    May 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    August 2017
    June 2017
    May 2017
    March 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    November 2015
    October 2015
    September 2015
    August 2015
    June 2015

    Categories

    All
    3D Metal Printing
    3D Printing
    Additive Manufacturing
    Airlines
    Alternative Fuel Vehicles
    Argon
    Beyond Meat
    Breweries
    Build Chamber
    Butane
    Cannabinoids
    Cannabis
    Cannabis Extraction
    Carbon Capture
    Carbon Dioxide
    Carbon Dioxide Monitor
    Cbd
    CBD Oil
    Char
    Charring
    Chlorine
    Chlorine Gas
    Chlorine Safety
    CL2
    CNG
    CO2
    Cold Chain
    Combustible
    Combustible Gas
    Combustible Gas Monitor
    Compressed Gases
    Corrosion
    Covid-19 Vaccine
    Cryochamber
    Cryogenic
    Cryogenic Facilities
    Cryogenic Gases
    Cryopreservation
    Cryopump
    Cryo Spa
    Cryostorage
    Cryotherapy
    Disinfectant
    Disinfecting
    Disinfection
    Dry Ice
    Earthly Labs
    Eggs
    Electrolyte
    Embryos
    Ethanol
    Ethyl Alcohol
    Ethylene
    EtO
    Explosion Proof
    Extraction
    Fertility Clinic
    Flammable
    Flash-frozen
    Food
    Food Processing
    Food Spoilage
    Freeze-dried
    Freezer
    Gas
    Gas Detection
    Gas Detector
    Gas Detectors
    Gases
    Gas Leak
    Gas Leaks
    Gas Mixture
    Grow
    H2o2
    Hand Sanitizer
    Helium
    Heme
    Hopper
    Hot Melt Adhesive
    Hot Melt Foam Adhesive
    How To Monitor Oxygen Levels In A Room
    Hydrocarbon
    Hydrocarbon Solvent Extraction
    Hydrogen Fuel
    Hydrogen Peroxide
    Hydrogen Peroxide Vapor
    Impossible Foods
    Inert Gas
    In Vitro Fertilization
    IVF
    James Webb Telescope
    Laboratory Safety
    Leak Detection
    Leghemoglobin
    Lel
    Li-ion Battery
    Liquid Helium
    Liquid Nitrogen
    Liquid Nitrogen Leak
    Lithium-ion Battery
    LN2
    LNG
    Low Oxygen Environments
    Magnetic Resonance
    Medical Device
    Melt Tank
    Metal Powders
    Modified Atmosphere Packaging
    Monitoring
    Mri
    Mri O2 Monitor
    N2
    N95 Masks
    N95 Respirators
    Natural Gas
    Nema 4
    Nitrogen
    Nitrogen Blanketing
    Nitrogen Generator
    Nmr
    O
    O2
    O2/CO2 Monitor
    O2 Dry Ice
    Off-gas
    Osha
    Oxidation
    Oxide
    Oxygen
    Oxygen Analyzer
    Oxygen/carbon Dioxide Monitor
    Oxygen Deficiency
    Oxygen Deficiency Monitor
    Oxygen Deficiency Monitors
    Oxygen Depleting
    Oxygen Depletion
    Oxygen Detection
    Oxygen Displacement
    Oxygen Levels
    Oxygen Monitor
    Oxygen Monitoring
    Oxygen Monitors
    Pharmaceutical
    Plant Based Meat
    Porosity
    PPE
    Propane
    PureAire
    Sample Draw Oxygen Monitor
    Smart Sensor Cell
    Sterilization
    Sterilizing
    Superconductivity
    Surgical Devices
    Tank Blanketing
    Terpenes
    Thc
    Thermal Runaway
    Thermal Vacuum Chamber
    Titanium
    Trace Oxygen
    Tunnel Freezer
    Universal Gas Detector
    Vaccine
    Vaccine Storage
    Vaccine Transport
    Water Resistant
    Whole Body Cryotherapy
    Zirconium Oxide

Proudly powered by Weebly